基于Sentinel-2多光谱卫星图像的卫星衍生测深算法精度比较

Muhammad Iqra Prasetya, V. Siregar, S. B. Agus
{"title":"基于Sentinel-2多光谱卫星图像的卫星衍生测深算法精度比较","authors":"Muhammad Iqra Prasetya, V. Siregar, S. B. Agus","doi":"10.14710/jkt.v26i1.16050","DOIUrl":null,"url":null,"abstract":"The utilization of satellite image data and image data processing techniques has become an efficient alternative to obtain bathymetric data in a broad and complicated area. This study aimed to determine the algorithm's performance in the waters of Lambasina Island. Atmospheric and radiometric correction using the Dark Object Subtraction (DOS) method for initial processing of Sentinel-2 images. The multispectral channel used, namely the blue, green, and red bands, was tested by regression using field observation data. The algorithms used to estimate bathymetry include Lyzenga, Stumpf, and Support Vector Machine (SVM). The test results of the three algorithms showed that the support vector machine algorithm was the best algorithm for estimating bathymetry after the Stumpf and Lyzenga algorithms. The correlation results of the SVM algorithm in the waters of the small Lambasina island got a correlation coefficient of determination R2 = 0.81 and the large Lambasina waters area R2 = 0.82. The second-best algorithm was Stumpf, with a correlation coefficient of determination of R2 = 0.79 in the waters of the small Lambasina island and R2 = 0.80 in the waters of the large Lambasina island. Lyzenga's algorithm got the correlation coefficient of determination R2 = 0.78 on small Lambasina Islands and large Lambasina Islands with a determination correlation coefficient value of R2 = 0.79.","PeriodicalId":53001,"journal":{"name":"Jurnal Kelautan Tropis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of Satellite-Derived Bathymetry Algorithm Accuracy Using Sentinel-2 Multispectral Satellite Image\",\"authors\":\"Muhammad Iqra Prasetya, V. Siregar, S. B. Agus\",\"doi\":\"10.14710/jkt.v26i1.16050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utilization of satellite image data and image data processing techniques has become an efficient alternative to obtain bathymetric data in a broad and complicated area. This study aimed to determine the algorithm's performance in the waters of Lambasina Island. Atmospheric and radiometric correction using the Dark Object Subtraction (DOS) method for initial processing of Sentinel-2 images. The multispectral channel used, namely the blue, green, and red bands, was tested by regression using field observation data. The algorithms used to estimate bathymetry include Lyzenga, Stumpf, and Support Vector Machine (SVM). The test results of the three algorithms showed that the support vector machine algorithm was the best algorithm for estimating bathymetry after the Stumpf and Lyzenga algorithms. The correlation results of the SVM algorithm in the waters of the small Lambasina island got a correlation coefficient of determination R2 = 0.81 and the large Lambasina waters area R2 = 0.82. The second-best algorithm was Stumpf, with a correlation coefficient of determination of R2 = 0.79 in the waters of the small Lambasina island and R2 = 0.80 in the waters of the large Lambasina island. Lyzenga's algorithm got the correlation coefficient of determination R2 = 0.78 on small Lambasina Islands and large Lambasina Islands with a determination correlation coefficient value of R2 = 0.79.\",\"PeriodicalId\":53001,\"journal\":{\"name\":\"Jurnal Kelautan Tropis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Kelautan Tropis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jkt.v26i1.16050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kelautan Tropis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jkt.v26i1.16050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用卫星图像数据和图像数据处理技术已成为在广阔而复杂的地区获取测深数据的有效替代方法。本研究旨在确定该算法在Lambasina岛水域的性能。使用暗物体减法(DOS)方法对Sentinel-2图像进行初始处理的大气和辐射校正。使用的多光谱通道,即蓝色、绿色和红色波段,通过使用现场观测数据的回归进行了测试。用于估计水深的算法包括Lyzenga、Stumpf和支持向量机(SVM)。三种算法的测试结果表明,支持向量机算法是仅次于Stumpf和Lyzenga算法的最佳水深估计算法。SVM算法在小Lambasina岛水域的相关结果得到确定的相关系数R2=0.81,大Lambasina水域R2=0.82。第二好的算法是Stumpf,在小Lambasina岛的水域中确定的相关系数为R2=0.79,在大Lambasina岛屿的水域中为R2=0.80。Lyzenga算法在小Lambasina群岛和大Lambasina岛上得到的判定相关系数R2=0.78,判定相关系数值R2=0.79。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Satellite-Derived Bathymetry Algorithm Accuracy Using Sentinel-2 Multispectral Satellite Image
The utilization of satellite image data and image data processing techniques has become an efficient alternative to obtain bathymetric data in a broad and complicated area. This study aimed to determine the algorithm's performance in the waters of Lambasina Island. Atmospheric and radiometric correction using the Dark Object Subtraction (DOS) method for initial processing of Sentinel-2 images. The multispectral channel used, namely the blue, green, and red bands, was tested by regression using field observation data. The algorithms used to estimate bathymetry include Lyzenga, Stumpf, and Support Vector Machine (SVM). The test results of the three algorithms showed that the support vector machine algorithm was the best algorithm for estimating bathymetry after the Stumpf and Lyzenga algorithms. The correlation results of the SVM algorithm in the waters of the small Lambasina island got a correlation coefficient of determination R2 = 0.81 and the large Lambasina waters area R2 = 0.82. The second-best algorithm was Stumpf, with a correlation coefficient of determination of R2 = 0.79 in the waters of the small Lambasina island and R2 = 0.80 in the waters of the large Lambasina island. Lyzenga's algorithm got the correlation coefficient of determination R2 = 0.78 on small Lambasina Islands and large Lambasina Islands with a determination correlation coefficient value of R2 = 0.79.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
43
审稿时长
16 weeks
期刊最新文献
Growth of Gracilaria sp. in Monoculture and Polyculture System with Milkfish (Chanos chanos Forsk) in Traditional Ponds, Brebes Regency, Central Java Tidal Analysis and Implementasion of an Internet of Things (IoT) Sea Level Monitoring Device in Coastal Region Distribution Pattern of Chlorophyll-a in the Delta Wulan Waters, Demak Regency, Central Java, Indonesia Analysis of Mangrove Leaf Litter Decomposition Rate in Mangrove Ecosystem of Muara Pagatan, South Kalimantan Length-Weight Relationship and Condition Factors of Sea Cucumber on Mare and Moti Islands Conservation Areas in North Maluku
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1