AP1000反应堆典型燃料组件中MOX(U,Th)O2燃料应用的热工水力学评估

Caio J.C.M.R. Cunha, F. A. Lima, D. Rodríguez
{"title":"AP1000反应堆典型燃料组件中MOX(U,Th)O2燃料应用的热工水力学评估","authors":"Caio J.C.M.R. Cunha, F. A. Lima, D. Rodríguez","doi":"10.1504/ijnest.2020.10034460","DOIUrl":null,"url":null,"abstract":"In the present work, we propose a three-dimensional model of the typical fuel assembly of the AP1000 reactor with the change from conventional fuel to (U, Th)O2. Owing to the complexity of the real model, we made some simplifications to reduce the computational cost and optimise the calculation time. The absence of spacer grids, burnable poisons, and the simulation of only 1/8 of the fuel assembly, culminated in a simplified model, and at the same time, capable of representing the reactor's operating situation under normal conditions. We obtained the power density distribution in the fuel assembly through a neutronic-thermohydraulic coupling, using MCNP6 and ANSYS CFX-19, respectively. One of the main differentials of this model is the consideration of the temperature dependence of thermophysical properties, which shows a direct influence on the results. We assessed the correlations published in some reports about thermal conductivity, density, and specific heat to obtain expressions for these parameters. We determined the temperature profiles, the axial distribution of the coolant density, and the pressure drop in the fuel assembly to assess the thermohydraulic limits. The proposed model presented results according to the project limits for the normal operating conditions of the reactor. The implementation of a robust model provided consistent results, in addition to a methodology capable of carrying out more complex analyses.","PeriodicalId":35144,"journal":{"name":"International Journal of Nuclear Energy Science and Technology","volume":"14 1","pages":"97"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermohydraulic evaluation of a MOX (U, Th)O2 fuel application in an AP1000 reactor typical fuel assembly\",\"authors\":\"Caio J.C.M.R. Cunha, F. A. Lima, D. Rodríguez\",\"doi\":\"10.1504/ijnest.2020.10034460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, we propose a three-dimensional model of the typical fuel assembly of the AP1000 reactor with the change from conventional fuel to (U, Th)O2. Owing to the complexity of the real model, we made some simplifications to reduce the computational cost and optimise the calculation time. The absence of spacer grids, burnable poisons, and the simulation of only 1/8 of the fuel assembly, culminated in a simplified model, and at the same time, capable of representing the reactor's operating situation under normal conditions. We obtained the power density distribution in the fuel assembly through a neutronic-thermohydraulic coupling, using MCNP6 and ANSYS CFX-19, respectively. One of the main differentials of this model is the consideration of the temperature dependence of thermophysical properties, which shows a direct influence on the results. We assessed the correlations published in some reports about thermal conductivity, density, and specific heat to obtain expressions for these parameters. We determined the temperature profiles, the axial distribution of the coolant density, and the pressure drop in the fuel assembly to assess the thermohydraulic limits. The proposed model presented results according to the project limits for the normal operating conditions of the reactor. The implementation of a robust model provided consistent results, in addition to a methodology capable of carrying out more complex analyses.\",\"PeriodicalId\":35144,\"journal\":{\"name\":\"International Journal of Nuclear Energy Science and Technology\",\"volume\":\"14 1\",\"pages\":\"97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nuclear Energy Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijnest.2020.10034460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nuclear Energy Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijnest.2020.10034460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

在本工作中,我们提出了AP1000反应堆典型燃料组件的三维模型,该模型从传统燃料变为(U,Th)O2。由于实际模型的复杂性,我们进行了一些简化,以降低计算成本并优化计算时间。由于没有间隔栅、可燃毒物以及仅模拟了1/8的燃料组件,最终形成了一个简化的模型,同时能够代表反应堆在正常条件下的运行情况。我们分别使用MCNP6和ANSYS CFX-19通过中子热液耦合获得了燃料组件中的功率密度分布。该模型的主要区别之一是考虑了热物理性质的温度依赖性,这对结果有直接影响。我们评估了一些报告中发表的关于热导率、密度和比热的相关性,以获得这些参数的表达式。我们确定了温度分布、冷却剂密度的轴向分布和燃料组件中的压降,以评估热工水力极限。所提出的模型根据反应堆正常运行条件下的项目限制给出了结果。除了能够进行更复杂分析的方法外,稳健模型的实施还提供了一致的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermohydraulic evaluation of a MOX (U, Th)O2 fuel application in an AP1000 reactor typical fuel assembly
In the present work, we propose a three-dimensional model of the typical fuel assembly of the AP1000 reactor with the change from conventional fuel to (U, Th)O2. Owing to the complexity of the real model, we made some simplifications to reduce the computational cost and optimise the calculation time. The absence of spacer grids, burnable poisons, and the simulation of only 1/8 of the fuel assembly, culminated in a simplified model, and at the same time, capable of representing the reactor's operating situation under normal conditions. We obtained the power density distribution in the fuel assembly through a neutronic-thermohydraulic coupling, using MCNP6 and ANSYS CFX-19, respectively. One of the main differentials of this model is the consideration of the temperature dependence of thermophysical properties, which shows a direct influence on the results. We assessed the correlations published in some reports about thermal conductivity, density, and specific heat to obtain expressions for these parameters. We determined the temperature profiles, the axial distribution of the coolant density, and the pressure drop in the fuel assembly to assess the thermohydraulic limits. The proposed model presented results according to the project limits for the normal operating conditions of the reactor. The implementation of a robust model provided consistent results, in addition to a methodology capable of carrying out more complex analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
期刊介绍: Today, nuclear reactors generate nearly one quarter of the electricity in nations representing two thirds of humanity, and other nuclear applications are integral to many aspects of the world economy. Nuclear fission remains an important option for meeting energy requirements and maintaining a balanced worldwide energy policy; with major countries expanding nuclear energy"s role and new countries poised to introduce it, the key issue is not whether the use of nuclear technology will grow worldwide, even if public opinion concerning safety, the economics of nuclear power, and waste disposal issues adversely affect the general acceptance of nuclear power, but whether it will grow fast enough to make a decisive contribution to the global imperative of sustainable development.
期刊最新文献
Molecular Dynamic Studies of the Transesterification Process Using Strontium Oxide as an Effective Catalyst for Biodiesel Production Research Progress on SiC Composite Materials, Electrolyte Additives and Binders of Negative Electrodes Progress in Preparation of Transesterification Catalyzed by Composite Hydrotalcite Optimization of Hydrogen Injection Flow Rate for Hydrogen Internal Combustion Engines Based on IQGA Study on the Performance of Abandoned Medical Masks in Drilling Fluid Under the Background of "COVID-19"
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1