基于人工神经网络反向传播的电子鼻传感器在龙目琼脂分类中的应用

Q3 Agricultural and Biological Sciences Research in Agricultural Engineering Pub Date : 2020-09-30 DOI:10.17221/26/2020-rae
F. A. Aditama, Lalu Zulfikri, L. Mardiana, T. Mulyaningsih, N. Qomariyah, R. Wirawan
{"title":"基于人工神经网络反向传播的电子鼻传感器在龙目琼脂分类中的应用","authors":"F. A. Aditama, Lalu Zulfikri, L. Mardiana, T. Mulyaningsih, N. Qomariyah, R. Wirawan","doi":"10.17221/26/2020-rae","DOIUrl":null,"url":null,"abstract":"The aim of the present study is the development of an electronic nose system prototype for the classification of Gyrinops versteegii agarwood. The prototype consists of three gas sensors, i.e., TGS822, TGS2620, and TGS2610. The data acquisition and quality classification of the nose system are controlled by the Artificial Neural Network backpropagation algorithm in the Arduino Mega2650 microcontroller module. The testing result shows that an electronic nose can distinguish the quality of Gyrinops versteegii agarwood. The good-quality agarwood has an output of [1 –1], while the poor-quality agarwood has an output of [–1 1].","PeriodicalId":20906,"journal":{"name":"Research in Agricultural Engineering","volume":"66 1","pages":"97-103"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17221/26/2020-rae","citationCount":"3","resultStr":"{\"title\":\"Electronic nose sensor development using ANN backpropagation for Lombok Agarwood classification\",\"authors\":\"F. A. Aditama, Lalu Zulfikri, L. Mardiana, T. Mulyaningsih, N. Qomariyah, R. Wirawan\",\"doi\":\"10.17221/26/2020-rae\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the present study is the development of an electronic nose system prototype for the classification of Gyrinops versteegii agarwood. The prototype consists of three gas sensors, i.e., TGS822, TGS2620, and TGS2610. The data acquisition and quality classification of the nose system are controlled by the Artificial Neural Network backpropagation algorithm in the Arduino Mega2650 microcontroller module. The testing result shows that an electronic nose can distinguish the quality of Gyrinops versteegii agarwood. The good-quality agarwood has an output of [1 –1], while the poor-quality agarwood has an output of [–1 1].\",\"PeriodicalId\":20906,\"journal\":{\"name\":\"Research in Agricultural Engineering\",\"volume\":\"66 1\",\"pages\":\"97-103\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.17221/26/2020-rae\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Agricultural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17221/26/2020-rae\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17221/26/2020-rae","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3

摘要

本研究的目的是开发一种电子鼻系统原型,用于对金龟子进行分类。原型由三个气体传感器组成,即TGS822、TGS2620和TGS2610。鼻系统的数据采集和质量分类由Arduino Mega2650微控制器模块中的人工神经网络反向传播算法控制。试验结果表明,电子鼻能有效地鉴别金莲药材的质量。质量好的沉香的产量为[1-1],而质量差的沉香产量为[1-11]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electronic nose sensor development using ANN backpropagation for Lombok Agarwood classification
The aim of the present study is the development of an electronic nose system prototype for the classification of Gyrinops versteegii agarwood. The prototype consists of three gas sensors, i.e., TGS822, TGS2620, and TGS2610. The data acquisition and quality classification of the nose system are controlled by the Artificial Neural Network backpropagation algorithm in the Arduino Mega2650 microcontroller module. The testing result shows that an electronic nose can distinguish the quality of Gyrinops versteegii agarwood. The good-quality agarwood has an output of [1 –1], while the poor-quality agarwood has an output of [–1 1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in Agricultural Engineering
Research in Agricultural Engineering Engineering, agriculture-
CiteScore
1.40
自引率
0.00%
发文量
21
审稿时长
24 weeks
期刊介绍: Original scientific papers, short communications, information, and studies covering all areas of agricultural engineering, agricultural technology, processing of agricultural products, countryside buildings and related problems from ecology, energetics, economy, ergonomy and applied physics and chemistry. Papers are published in English.
期刊最新文献
The effect of parameter adjustment in sago palm classification-based convolutional neural network (CNN) model Influence of soil tillage technology on tillage erosion Fabrication and performance test of a multipurpose ohmic heating apparatus with a real-time data logging system based on low-cost sensors Enhancing melon yield through a low-cost drip irrigation control system with time and soil sensor Reconstructed military machine for unique field testing of agricultural machinery capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1