种子真菌内生菌促进了南极海域侵入性黄花菌的形成

IF 1.7 4区 生物学 Q2 PLANT SCIENCES Plant Ecology & Diversity Pub Date : 2022-11-09 DOI:10.1080/17550874.2022.2145579
G. Ballesteros, I. Acuña‐Rodríguez, Andrea Barrera, P. Gundel, K. Newsham, M. Molina‐Montenegro
{"title":"种子真菌内生菌促进了南极海域侵入性黄花菌的形成","authors":"G. Ballesteros, I. Acuña‐Rodríguez, Andrea Barrera, P. Gundel, K. Newsham, M. Molina‐Montenegro","doi":"10.1080/17550874.2022.2145579","DOIUrl":null,"url":null,"abstract":"ABSTRACT Background Invasive plants may displace native species. This is the case for Poa annua, the only non-native plant species successfully established in Maritime Antarctica. Nonetheless, it is uncertain which factors drive the competitive success of P. annua in the harsh environmental conditions of the region. The ability of this plant species to establish novel mutualistic interactions with resident soil fungi may be crucial for its invasiveness. Such ability may be linked to the vertical transmission of fungal endophytes via seeds. Aims We undertook a study to assess the role of seed fungal endophytes as promoters of the establishment and invasion of Poa annua in Maritime Antarctica. Methods We explored the composition and diversity of fungal communities associated with different P. annua tissues (seeds, leaves and roots) and the soil. We also measured parameters including germination rate, above-ground biomass, reproductive structures, and the survival of invasive P. annua as well as of the native Colobanthus quitensis and Deschampsia antarctica grown from seeds with and without endophytes. Furthermore, we conducted inter- and intraspecific competition experiments among native and invasive plants, where chemically mediated plant-to-plant interference (allelopathy) and plant growth rate were measured to calculate a relative competition index. Results We found that fungal endophyte taxa associated with P. annua tissues were very different from those in the soil. Fungal endophytes in P. annua differed among seed, root and shoot tissues, which suggests low transmission among different organs. The removal of endophytes from P. annua seeds was associated with reduced seed germination, plant growth and survivorship, while the competitive ability of P. annua (assessed by accumulated biomass) relative to native species, as well as levels of allelochemicals in soils, were higher in the presence of seed fungal endophytes. Conclusion Our results suggest that fungal endophytes, maternally inherited through seeds, improve host fitness and may contribute to the invasive success of P. annua in Antarctica.","PeriodicalId":49691,"journal":{"name":"Plant Ecology & Diversity","volume":"15 1","pages":"199 - 212"},"PeriodicalIF":1.7000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Seed fungal endophytes promote the establishment of invasive Poa annua in maritime Antarctica\",\"authors\":\"G. Ballesteros, I. Acuña‐Rodríguez, Andrea Barrera, P. Gundel, K. Newsham, M. Molina‐Montenegro\",\"doi\":\"10.1080/17550874.2022.2145579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Background Invasive plants may displace native species. This is the case for Poa annua, the only non-native plant species successfully established in Maritime Antarctica. Nonetheless, it is uncertain which factors drive the competitive success of P. annua in the harsh environmental conditions of the region. The ability of this plant species to establish novel mutualistic interactions with resident soil fungi may be crucial for its invasiveness. Such ability may be linked to the vertical transmission of fungal endophytes via seeds. Aims We undertook a study to assess the role of seed fungal endophytes as promoters of the establishment and invasion of Poa annua in Maritime Antarctica. Methods We explored the composition and diversity of fungal communities associated with different P. annua tissues (seeds, leaves and roots) and the soil. We also measured parameters including germination rate, above-ground biomass, reproductive structures, and the survival of invasive P. annua as well as of the native Colobanthus quitensis and Deschampsia antarctica grown from seeds with and without endophytes. Furthermore, we conducted inter- and intraspecific competition experiments among native and invasive plants, where chemically mediated plant-to-plant interference (allelopathy) and plant growth rate were measured to calculate a relative competition index. Results We found that fungal endophyte taxa associated with P. annua tissues were very different from those in the soil. Fungal endophytes in P. annua differed among seed, root and shoot tissues, which suggests low transmission among different organs. The removal of endophytes from P. annua seeds was associated with reduced seed germination, plant growth and survivorship, while the competitive ability of P. annua (assessed by accumulated biomass) relative to native species, as well as levels of allelochemicals in soils, were higher in the presence of seed fungal endophytes. Conclusion Our results suggest that fungal endophytes, maternally inherited through seeds, improve host fitness and may contribute to the invasive success of P. annua in Antarctica.\",\"PeriodicalId\":49691,\"journal\":{\"name\":\"Plant Ecology & Diversity\",\"volume\":\"15 1\",\"pages\":\"199 - 212\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Ecology & Diversity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17550874.2022.2145579\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Ecology & Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17550874.2022.2145579","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 4

摘要

入侵植物可能会取代本地物种。这就是在南极海域成功生长的唯一一种非本地植物——黄花蒿的情况。尽管如此,在该地区恶劣的环境条件下,哪些因素推动了黄花蒿的竞争成功尚不确定。这种植物与常驻土壤真菌建立新的互惠相互作用的能力可能是其入侵的关键。这种能力可能与真菌内生菌通过种子的垂直传播有关。目的研究种子真菌内生菌对南极海洋植物黄花菌形成和入侵的促进作用。方法研究黄杨不同组织(种子、叶、根)和土壤中真菌群落的组成和多样性。我们还测量了一些参数,包括发芽率,地上生物量,生殖结构,以及入侵的P. annua以及本地的Colobanthus quitensis和Deschampsia antarctica的存活率,这些种子是由有内生菌和没有内生菌的种子生长的。此外,我们在本地和入侵植物之间进行了种间和种内竞争实验,测量了化学介导的植物间干扰(化感作用)和植物生长速率,以计算相对竞争指数。结果黄杨组织真菌内生菌群与土壤真菌内生菌群存在较大差异。黄花苜蓿种子、根和芽组织中真菌内生菌数量存在差异,表明不同器官间的传播较低。从黄花苜蓿种子中去除内生真菌会降低种子萌发、植物生长和存活率,而黄花苜蓿相对于本地物种的竞争能力(以累积生物量评估)以及土壤中的化感化学物质水平在种子内生真菌存在的情况下更高。结论通过种子母系遗传的真菌内生菌提高了寄主的适应性,可能是黄花假蝇成功入侵南极的原因之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seed fungal endophytes promote the establishment of invasive Poa annua in maritime Antarctica
ABSTRACT Background Invasive plants may displace native species. This is the case for Poa annua, the only non-native plant species successfully established in Maritime Antarctica. Nonetheless, it is uncertain which factors drive the competitive success of P. annua in the harsh environmental conditions of the region. The ability of this plant species to establish novel mutualistic interactions with resident soil fungi may be crucial for its invasiveness. Such ability may be linked to the vertical transmission of fungal endophytes via seeds. Aims We undertook a study to assess the role of seed fungal endophytes as promoters of the establishment and invasion of Poa annua in Maritime Antarctica. Methods We explored the composition and diversity of fungal communities associated with different P. annua tissues (seeds, leaves and roots) and the soil. We also measured parameters including germination rate, above-ground biomass, reproductive structures, and the survival of invasive P. annua as well as of the native Colobanthus quitensis and Deschampsia antarctica grown from seeds with and without endophytes. Furthermore, we conducted inter- and intraspecific competition experiments among native and invasive plants, where chemically mediated plant-to-plant interference (allelopathy) and plant growth rate were measured to calculate a relative competition index. Results We found that fungal endophyte taxa associated with P. annua tissues were very different from those in the soil. Fungal endophytes in P. annua differed among seed, root and shoot tissues, which suggests low transmission among different organs. The removal of endophytes from P. annua seeds was associated with reduced seed germination, plant growth and survivorship, while the competitive ability of P. annua (assessed by accumulated biomass) relative to native species, as well as levels of allelochemicals in soils, were higher in the presence of seed fungal endophytes. Conclusion Our results suggest that fungal endophytes, maternally inherited through seeds, improve host fitness and may contribute to the invasive success of P. annua in Antarctica.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Ecology & Diversity
Plant Ecology & Diversity PLANT SCIENCES-
CiteScore
3.30
自引率
0.00%
发文量
26
审稿时长
3 months
期刊介绍: Plant Ecology and Diversity is an international journal for communicating results and novel ideas in plant science, in print and on-line, six times a year. All areas of plant biology relating to ecology, evolution and diversity are of interest, including those which explicitly deal with today''s highly topical themes, such as biodiversity, conservation and global change. We consider submissions that address fundamental questions which are pertinent to contemporary plant science. Articles concerning extreme environments world-wide are particularly welcome. Plant Ecology and Diversity considers for publication original research articles, short communications, reviews, and scientific correspondence that explore thought-provoking ideas. To aid redressing ‘publication bias’ the journal is unique in reporting, in the form of short communications, ‘negative results’ and ‘repeat experiments’ that test ecological theories experimentally, in theoretically flawless and methodologically sound papers. Research reviews and method papers, are also encouraged. Plant Ecology & Diversity publishes high-quality and topical research that demonstrates solid scholarship. As such, the journal does not publish purely descriptive papers. Submissions are required to focus on research topics that are broad in their scope and thus provide new insights and contribute to theory. The original research should address clear hypotheses that test theory or questions and offer new insights on topics of interest to an international readership.
期刊最新文献
Relationship between plant diversity and community stability and invasibility in the heterogeneous landscape of urban habitats undergoing Solidago canadensis invasion Calluna vulgaris volatile emissions suggest varying anti-herbivore defence strategies with plant ontogeny Multiple global change factors cause declines of a temperate bryophyte Rethinking the relationship between desiccation-tolerant vascular plants and water deficit Occurrence of preanthesis cleistogamy in Richardia brasiliensis suggests it may be more common in Rubiaceae than realised
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1