信道状态估计对2×2~4×4MIMO无线通信系统中导频符号正交序列的改进

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Electrical Control and Communication Engineering Pub Date : 2021-06-01 DOI:10.2478/ecce-2021-0004
V. Romanuke
{"title":"信道状态估计对2×2~4×4MIMO无线通信系统中导频符号正交序列的改进","authors":"V. Romanuke","doi":"10.2478/ecce-2021-0004","DOIUrl":null,"url":null,"abstract":"Abstract MIMO wireless communication systems with channel state estimation, in which 2 to 4 transmit-receive antenna pairs are employed, are simulated. The channel estimation is fulfilled by the orthogonal pilot signal approach, where the Walsh Hadamard-ordered sequences are commonly used for piloting. The signal is modulated by applying the quaternary phase shift keying method. Maximum 250 000 packets are transmitted through flat-fading Rayleigh channels, to which white Gaussian noise is added. Based on simulating 10 subcases of the frame length and number of pilot symbols per frame, it is ascertained that pilot symbol orthogonal sequences in 2×2 to 4×4 MIMO systems can be improved by substituting Walsh functions with partially unsymmetrical binary functions constituting the eight known orthogonal bases. The benefit is that the bit-error rate is substantially decreased, especially for 2×2 MIMO systems. Considering three cases of the pilot signal de-orthogonalization caused by two indefinite and definite pilot sequence symbol errors, the relative decrement varies from 0.123 % to 14.7 %. However, the decrement becomes less significant as the number of transmit-receive antenna pairs is increased.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"17 1","pages":"26 - 38"},"PeriodicalIF":0.5000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of Pilot Symbol Orthogonal Sequences in 2×2 to 4×4 MIMO Wireless Communication Systems with Channel State Estimation\",\"authors\":\"V. Romanuke\",\"doi\":\"10.2478/ecce-2021-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract MIMO wireless communication systems with channel state estimation, in which 2 to 4 transmit-receive antenna pairs are employed, are simulated. The channel estimation is fulfilled by the orthogonal pilot signal approach, where the Walsh Hadamard-ordered sequences are commonly used for piloting. The signal is modulated by applying the quaternary phase shift keying method. Maximum 250 000 packets are transmitted through flat-fading Rayleigh channels, to which white Gaussian noise is added. Based on simulating 10 subcases of the frame length and number of pilot symbols per frame, it is ascertained that pilot symbol orthogonal sequences in 2×2 to 4×4 MIMO systems can be improved by substituting Walsh functions with partially unsymmetrical binary functions constituting the eight known orthogonal bases. The benefit is that the bit-error rate is substantially decreased, especially for 2×2 MIMO systems. Considering three cases of the pilot signal de-orthogonalization caused by two indefinite and definite pilot sequence symbol errors, the relative decrement varies from 0.123 % to 14.7 %. However, the decrement becomes less significant as the number of transmit-receive antenna pairs is increased.\",\"PeriodicalId\":42365,\"journal\":{\"name\":\"Electrical Control and Communication Engineering\",\"volume\":\"17 1\",\"pages\":\"26 - 38\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Control and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ecce-2021-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Control and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ecce-2021-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要对采用2 ~ 4对收发天线的信道状态估计MIMO无线通信系统进行了仿真。信道估计由正交导频信号方法实现,其中通常使用Walsh hadamard序序列进行导频。采用四元相移键控方法对信号进行调制。通过加入高斯白噪声的平衰落瑞利信道传输的数据包最多可达25万个。通过对10个帧长和每帧导频符号数的子情况进行仿真,确定了用组成8个已知正交基的部分不对称二元函数代替Walsh函数可以改进2×2 ~ 4×4 MIMO系统中的导频符号正交序列。这样做的好处是误码率大大降低,特别是对于2×2 MIMO系统。考虑两种不确定和确定的导频序列符号误差引起的导频信号去正交化的三种情况,相对减量从0.123%到14.7%不等。然而,随着发射-接收天线对数量的增加,衰减变得不那么显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of Pilot Symbol Orthogonal Sequences in 2×2 to 4×4 MIMO Wireless Communication Systems with Channel State Estimation
Abstract MIMO wireless communication systems with channel state estimation, in which 2 to 4 transmit-receive antenna pairs are employed, are simulated. The channel estimation is fulfilled by the orthogonal pilot signal approach, where the Walsh Hadamard-ordered sequences are commonly used for piloting. The signal is modulated by applying the quaternary phase shift keying method. Maximum 250 000 packets are transmitted through flat-fading Rayleigh channels, to which white Gaussian noise is added. Based on simulating 10 subcases of the frame length and number of pilot symbols per frame, it is ascertained that pilot symbol orthogonal sequences in 2×2 to 4×4 MIMO systems can be improved by substituting Walsh functions with partially unsymmetrical binary functions constituting the eight known orthogonal bases. The benefit is that the bit-error rate is substantially decreased, especially for 2×2 MIMO systems. Considering three cases of the pilot signal de-orthogonalization caused by two indefinite and definite pilot sequence symbol errors, the relative decrement varies from 0.123 % to 14.7 %. However, the decrement becomes less significant as the number of transmit-receive antenna pairs is increased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrical Control and Communication Engineering
Electrical Control and Communication Engineering ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
14.30%
发文量
0
审稿时长
12 weeks
期刊最新文献
Technical Condition Monitoring for Telecommunication and Radioelectronic Systems with Redundancy A State of the Art in Simultaneous Localization and Mapping (SLAM) for Unmanned Ariel Vehicle (UAV): A Review Three-Point Iterated Interval Half-Cutting for Finding All Local Minima of Unknown Single-Variable Function Automatic Vessel Steering in a Storm GPR Application for Non-Rigid Road Pavement Condition Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1