Mokhamad Nur Cahyadi , Arizal Bawasir , Syachrul Arief , Amien Widodo , Meifal Rusli , Deni Kusumawardani , Yessi Rahmawati , Ana Martina , Putra Maulida , Hilda Lestiana
{"title":"利用GNSS和遥感分析2021年塞默鲁火山喷发对水蒸气含量和大气颗粒的影响","authors":"Mokhamad Nur Cahyadi , Arizal Bawasir , Syachrul Arief , Amien Widodo , Meifal Rusli , Deni Kusumawardani , Yessi Rahmawati , Ana Martina , Putra Maulida , Hilda Lestiana","doi":"10.1016/j.geog.2023.04.005","DOIUrl":null,"url":null,"abstract":"<div><p>Mount Semeru, an active volcano in East Java, Indonesia, erupted on December 4, 2021, following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava. The tropospheric conditions and dominant particle components in the atmosphere can be monitored using Global Navigation Satellite System (GNSS) technology and remote sensing satellites. GNSS signal propagation delay in Precise Point Positioning (PPP) processing can be used to determine Zenith Tropospheric Delay (ZTD) and Precipitable Water Vapor (PWV) variables so that atmospheric conditions can be generated. In addition, by using remote sensing satellite data, it is possible to obtain rainfall data with high temporal resolution as well as the dominant particle and gas content values during eruptions. During the eruption period, the high value of PWV was dominated by the high intensity of precipitation during the rainy season. High rainfall before the eruption caused activity inside the mountain to increase, which occurred in avalanche type eruption. Apart from that, the atmosphere around Semeru was also dominated by SO<sub>2</sub> content, which spreaded for tens of kilometers. SO<sub>2</sub> content began to be detected significantly by remote sensing sensors on December 7, 2021. In this study, deformation and atmospheric monitoring were also carried out using low-cost GNSS at the Semeru Monitoring Station on September 9–15, 2022. The results of the ZTD and ZWD values show the dominance of the wet component, which is directly proportional to rainfall activity in this period.</p></div>","PeriodicalId":46398,"journal":{"name":"Geodesy and Geodynamics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674984723000393/pdfft?md5=9c34be05e04b8a1e0d64de738daf64da&pid=1-s2.0-S1674984723000393-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis of the effect of the 2021 Semeru eruption on water vapor content and atmospheric particles using GNSS and remote sensing\",\"authors\":\"Mokhamad Nur Cahyadi , Arizal Bawasir , Syachrul Arief , Amien Widodo , Meifal Rusli , Deni Kusumawardani , Yessi Rahmawati , Ana Martina , Putra Maulida , Hilda Lestiana\",\"doi\":\"10.1016/j.geog.2023.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mount Semeru, an active volcano in East Java, Indonesia, erupted on December 4, 2021, following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava. The tropospheric conditions and dominant particle components in the atmosphere can be monitored using Global Navigation Satellite System (GNSS) technology and remote sensing satellites. GNSS signal propagation delay in Precise Point Positioning (PPP) processing can be used to determine Zenith Tropospheric Delay (ZTD) and Precipitable Water Vapor (PWV) variables so that atmospheric conditions can be generated. In addition, by using remote sensing satellite data, it is possible to obtain rainfall data with high temporal resolution as well as the dominant particle and gas content values during eruptions. During the eruption period, the high value of PWV was dominated by the high intensity of precipitation during the rainy season. High rainfall before the eruption caused activity inside the mountain to increase, which occurred in avalanche type eruption. Apart from that, the atmosphere around Semeru was also dominated by SO<sub>2</sub> content, which spreaded for tens of kilometers. SO<sub>2</sub> content began to be detected significantly by remote sensing sensors on December 7, 2021. In this study, deformation and atmospheric monitoring were also carried out using low-cost GNSS at the Semeru Monitoring Station on September 9–15, 2022. The results of the ZTD and ZWD values show the dominance of the wet component, which is directly proportional to rainfall activity in this period.</p></div>\",\"PeriodicalId\":46398,\"journal\":{\"name\":\"Geodesy and Geodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674984723000393/pdfft?md5=9c34be05e04b8a1e0d64de738daf64da&pid=1-s2.0-S1674984723000393-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodesy and Geodynamics\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674984723000393\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Geodynamics","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674984723000393","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Analysis of the effect of the 2021 Semeru eruption on water vapor content and atmospheric particles using GNSS and remote sensing
Mount Semeru, an active volcano in East Java, Indonesia, erupted on December 4, 2021, following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava. The tropospheric conditions and dominant particle components in the atmosphere can be monitored using Global Navigation Satellite System (GNSS) technology and remote sensing satellites. GNSS signal propagation delay in Precise Point Positioning (PPP) processing can be used to determine Zenith Tropospheric Delay (ZTD) and Precipitable Water Vapor (PWV) variables so that atmospheric conditions can be generated. In addition, by using remote sensing satellite data, it is possible to obtain rainfall data with high temporal resolution as well as the dominant particle and gas content values during eruptions. During the eruption period, the high value of PWV was dominated by the high intensity of precipitation during the rainy season. High rainfall before the eruption caused activity inside the mountain to increase, which occurred in avalanche type eruption. Apart from that, the atmosphere around Semeru was also dominated by SO2 content, which spreaded for tens of kilometers. SO2 content began to be detected significantly by remote sensing sensors on December 7, 2021. In this study, deformation and atmospheric monitoring were also carried out using low-cost GNSS at the Semeru Monitoring Station on September 9–15, 2022. The results of the ZTD and ZWD values show the dominance of the wet component, which is directly proportional to rainfall activity in this period.
期刊介绍:
Geodesy and Geodynamics launched in October, 2010, and is a bimonthly publication. It is sponsored jointly by Institute of Seismology, China Earthquake Administration, Science Press, and another six agencies. It is an international journal with a Chinese heart. Geodesy and Geodynamics is committed to the publication of quality scientific papers in English in the fields of geodesy and geodynamics from authors around the world. Its aim is to promote a combination between Geodesy and Geodynamics, deepen the application of Geodesy in the field of Geoscience and quicken worldwide fellows'' understanding on scientific research activity in China. It mainly publishes newest research achievements in the field of Geodesy, Geodynamics, Science of Disaster and so on. Aims and Scope: new theories and methods of geodesy; new results of monitoring and studying crustal movement and deformation by using geodetic theories and methods; new ways and achievements in earthquake-prediction investigation by using geodetic theories and methods; new results of crustal movement and deformation studies by using other geologic, hydrological, and geophysical theories and methods; new results of satellite gravity measurements; new development and results of space-to-ground observation technology.