Donal S. O’Leary, D. Hall, N. DiGirolamo, G. Riggs
{"title":"MODIS时代美国西部融雪时间的区域趋势","authors":"Donal S. O’Leary, D. Hall, N. DiGirolamo, G. Riggs","doi":"10.1080/02723646.2020.1854418","DOIUrl":null,"url":null,"abstract":"ABSTRACT Snowmelt controls important physical and ecological processes and is widely expected to occur earlier under most climate change scenarios. The western United States (US) is dependent on seasonal snowpack for water resources and recreation, and this diverse landscape is likely to experience continued changes to snowmelt timing that will differ across the domain. In this study, we use NASA’s cloud gap-filled snow-cover maps (MOD10A1F and MYD10A1F) to detect trends in snowmelt timing for hydrologic years 2001–2018. We find that 7.04% of the snow zone (i.e., areas with 10+ years of snow throughout the study period) of the western US is experiencing statistically significant (α = 0.05) trends of earlier snowmelt, while 2.62% of the snow zone is experiencing significant trends of later snowmelt. Analyses at the ecoregion level reveal regional trends, with many southwestern ecoregions experiencing large areas of dramatically earlier snowmelt (e.g., 19.84% of the Mojave Basin and Range). Interestingly, the North Cascades and the Northern Rockies ecoregions have substantial areas of later snowmelt (5.45% and 4.99%, respectively). Our work builds upon previous estimates of snowmelt timing to identify an overall trend of earlier snowmelt while highlighting the high spatial variability in snowmelt trends throughout the western US.","PeriodicalId":54618,"journal":{"name":"Physical Geography","volume":"43 1","pages":"285 - 307"},"PeriodicalIF":1.1000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/02723646.2020.1854418","citationCount":"2","resultStr":"{\"title\":\"Regional trends in snowmelt timing for the western United States throughout the MODIS era\",\"authors\":\"Donal S. O’Leary, D. Hall, N. DiGirolamo, G. Riggs\",\"doi\":\"10.1080/02723646.2020.1854418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Snowmelt controls important physical and ecological processes and is widely expected to occur earlier under most climate change scenarios. The western United States (US) is dependent on seasonal snowpack for water resources and recreation, and this diverse landscape is likely to experience continued changes to snowmelt timing that will differ across the domain. In this study, we use NASA’s cloud gap-filled snow-cover maps (MOD10A1F and MYD10A1F) to detect trends in snowmelt timing for hydrologic years 2001–2018. We find that 7.04% of the snow zone (i.e., areas with 10+ years of snow throughout the study period) of the western US is experiencing statistically significant (α = 0.05) trends of earlier snowmelt, while 2.62% of the snow zone is experiencing significant trends of later snowmelt. Analyses at the ecoregion level reveal regional trends, with many southwestern ecoregions experiencing large areas of dramatically earlier snowmelt (e.g., 19.84% of the Mojave Basin and Range). Interestingly, the North Cascades and the Northern Rockies ecoregions have substantial areas of later snowmelt (5.45% and 4.99%, respectively). Our work builds upon previous estimates of snowmelt timing to identify an overall trend of earlier snowmelt while highlighting the high spatial variability in snowmelt trends throughout the western US.\",\"PeriodicalId\":54618,\"journal\":{\"name\":\"Physical Geography\",\"volume\":\"43 1\",\"pages\":\"285 - 307\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/02723646.2020.1854418\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Geography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/02723646.2020.1854418\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Geography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/02723646.2020.1854418","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Regional trends in snowmelt timing for the western United States throughout the MODIS era
ABSTRACT Snowmelt controls important physical and ecological processes and is widely expected to occur earlier under most climate change scenarios. The western United States (US) is dependent on seasonal snowpack for water resources and recreation, and this diverse landscape is likely to experience continued changes to snowmelt timing that will differ across the domain. In this study, we use NASA’s cloud gap-filled snow-cover maps (MOD10A1F and MYD10A1F) to detect trends in snowmelt timing for hydrologic years 2001–2018. We find that 7.04% of the snow zone (i.e., areas with 10+ years of snow throughout the study period) of the western US is experiencing statistically significant (α = 0.05) trends of earlier snowmelt, while 2.62% of the snow zone is experiencing significant trends of later snowmelt. Analyses at the ecoregion level reveal regional trends, with many southwestern ecoregions experiencing large areas of dramatically earlier snowmelt (e.g., 19.84% of the Mojave Basin and Range). Interestingly, the North Cascades and the Northern Rockies ecoregions have substantial areas of later snowmelt (5.45% and 4.99%, respectively). Our work builds upon previous estimates of snowmelt timing to identify an overall trend of earlier snowmelt while highlighting the high spatial variability in snowmelt trends throughout the western US.
期刊介绍:
Physical Geography disseminates significant research in the environmental sciences, including research that integrates environmental processes and human activities. It publishes original papers devoted to research in climatology, geomorphology, hydrology, biogeography, soil science, human-environment interactions, and research methods in physical geography, and welcomes original contributions on topics at the intersection of two or more of these categories.