{"title":"“从重新参数化的纵向模型中获得可解释的参数:两个参数空间中增长因子之间的变换矩阵”述评","authors":"Ziwei Zhang, Corissa T. Rohloff, N. Kohli","doi":"10.3102/10769986221126747","DOIUrl":null,"url":null,"abstract":"To model growth over time, statistical techniques are available in both structural equation modeling (SEM) and random effects modeling frameworks. Liu et al. proposed a transformation and an inverse transformation for the linear–linear piecewise growth model with an unknown random knot, an intrinsically nonlinear function, in the SEM framework. This method allowed for the incorporation of time-invariant covariates. While the proposed method made novel contributions in this area of research, the use of transformations introduces some challenges to model estimation and dissemination. This commentary aims to illustrate the significant contributions of the authors’ proposed method in the SEM framework, along with presenting the challenges involved in implementing this method and opportunities available in an alternative framework.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"48 1","pages":"262 - 268"},"PeriodicalIF":1.9000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commentary on “Obtaining Interpretable Parameters From Reparameterized Longitudinal Models: Transformation Matrices Between Growth Factors in Two Parameter Spaces”\",\"authors\":\"Ziwei Zhang, Corissa T. Rohloff, N. Kohli\",\"doi\":\"10.3102/10769986221126747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To model growth over time, statistical techniques are available in both structural equation modeling (SEM) and random effects modeling frameworks. Liu et al. proposed a transformation and an inverse transformation for the linear–linear piecewise growth model with an unknown random knot, an intrinsically nonlinear function, in the SEM framework. This method allowed for the incorporation of time-invariant covariates. While the proposed method made novel contributions in this area of research, the use of transformations introduces some challenges to model estimation and dissemination. This commentary aims to illustrate the significant contributions of the authors’ proposed method in the SEM framework, along with presenting the challenges involved in implementing this method and opportunities available in an alternative framework.\",\"PeriodicalId\":48001,\"journal\":{\"name\":\"Journal of Educational and Behavioral Statistics\",\"volume\":\"48 1\",\"pages\":\"262 - 268\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational and Behavioral Statistics\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3102/10769986221126747\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986221126747","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Commentary on “Obtaining Interpretable Parameters From Reparameterized Longitudinal Models: Transformation Matrices Between Growth Factors in Two Parameter Spaces”
To model growth over time, statistical techniques are available in both structural equation modeling (SEM) and random effects modeling frameworks. Liu et al. proposed a transformation and an inverse transformation for the linear–linear piecewise growth model with an unknown random knot, an intrinsically nonlinear function, in the SEM framework. This method allowed for the incorporation of time-invariant covariates. While the proposed method made novel contributions in this area of research, the use of transformations introduces some challenges to model estimation and dissemination. This commentary aims to illustrate the significant contributions of the authors’ proposed method in the SEM framework, along with presenting the challenges involved in implementing this method and opportunities available in an alternative framework.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.