{"title":"基于定理综合的直觉命题逻辑中的溯因推理","authors":"Paul Tarau","doi":"10.1017/S1471068422000254","DOIUrl":null,"url":null,"abstract":"Abstract With help of a compact Prolog-based theorem prover for Intuitionistic Propositional Logic, we synthesize minimal assumptions under which a given formula formula becomes a theorem. After applying our synthesis algorithm to cover basic abductive reasoning mechanisms, we synthesize conjunctions of literals that mimic rows of truth tables in classical or intermediate logics and we abduce conditional hypotheses that turn the theorems of classical or intermediate logics into theorems in intuitionistic logic. One step further, we generalize our abductive reasoning mechanism to synthesize more expressive sequent premises using a minimal set of canonical formulas, to which arbitrary formulas in the calculus can be reduced while preserving their provability. Organized as a self-contained literate Prolog program, the paper supports interactive exploration of its content and ensures full replicability of our results.","PeriodicalId":49436,"journal":{"name":"Theory and Practice of Logic Programming","volume":"22 1","pages":"693 - 707"},"PeriodicalIF":1.4000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Abductive Reasoning in Intuitionistic Propositional Logic via Theorem Synthesis\",\"authors\":\"Paul Tarau\",\"doi\":\"10.1017/S1471068422000254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract With help of a compact Prolog-based theorem prover for Intuitionistic Propositional Logic, we synthesize minimal assumptions under which a given formula formula becomes a theorem. After applying our synthesis algorithm to cover basic abductive reasoning mechanisms, we synthesize conjunctions of literals that mimic rows of truth tables in classical or intermediate logics and we abduce conditional hypotheses that turn the theorems of classical or intermediate logics into theorems in intuitionistic logic. One step further, we generalize our abductive reasoning mechanism to synthesize more expressive sequent premises using a minimal set of canonical formulas, to which arbitrary formulas in the calculus can be reduced while preserving their provability. Organized as a self-contained literate Prolog program, the paper supports interactive exploration of its content and ensures full replicability of our results.\",\"PeriodicalId\":49436,\"journal\":{\"name\":\"Theory and Practice of Logic Programming\",\"volume\":\"22 1\",\"pages\":\"693 - 707\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Practice of Logic Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S1471068422000254\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Practice of Logic Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S1471068422000254","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Abductive Reasoning in Intuitionistic Propositional Logic via Theorem Synthesis
Abstract With help of a compact Prolog-based theorem prover for Intuitionistic Propositional Logic, we synthesize minimal assumptions under which a given formula formula becomes a theorem. After applying our synthesis algorithm to cover basic abductive reasoning mechanisms, we synthesize conjunctions of literals that mimic rows of truth tables in classical or intermediate logics and we abduce conditional hypotheses that turn the theorems of classical or intermediate logics into theorems in intuitionistic logic. One step further, we generalize our abductive reasoning mechanism to synthesize more expressive sequent premises using a minimal set of canonical formulas, to which arbitrary formulas in the calculus can be reduced while preserving their provability. Organized as a self-contained literate Prolog program, the paper supports interactive exploration of its content and ensures full replicability of our results.
期刊介绍:
Theory and Practice of Logic Programming emphasises both the theory and practice of logic programming. Logic programming applies to all areas of artificial intelligence and computer science and is fundamental to them. Among the topics covered are AI applications that use logic programming, logic programming methodologies, specification, analysis and verification of systems, inductive logic programming, multi-relational data mining, natural language processing, knowledge representation, non-monotonic reasoning, semantic web reasoning, databases, implementations and architectures and constraint logic programming.