{"title":"具有预定边际和创新分布的整数值自回归过程:一个新的视角","authors":"Matheus B. Guerrero, W. Barreto‐Souza, H. Ombao","doi":"10.1080/15326349.2021.1977141","DOIUrl":null,"url":null,"abstract":"Abstract Integer-valued autoregressive (INAR) processes are generally defined by specifying the thinning operator and either the innovations or the marginal distributions. The major limitations of such processes include difficulties in deriving the marginal properties and justifying the choice of the thinning operator. To overcome these drawbacks, we propose a novel approach for building an INAR model that offers the flexibility to prespecify both marginal and innovation distributions. Thus, the thinning operator is no longer subjectively selected but is rather a direct consequence of the marginal and innovation distributions specified by the modeler. Novel INAR processes are introduced following this perspective; these processes include a model with geometric marginal and innovation distributions (Geo-INAR) and models with bounded innovations. We explore the Geo-INAR model, which is a natural alternative to the classical Poisson INAR model. The Geo-INAR process has interesting stochastic properties, such as MA( ) representation, time reversibility, and closed forms for the -order transition probabilities, which enables a natural framework to perform coherent forecasting. To demonstrate the real-world application of the Geo-INAR model, we analyze a count time series of criminal records in sex offenses using the proposed methodology and compare it with existing INAR and integer-valued generalized autoregressive conditional heteroscedastic models.","PeriodicalId":21970,"journal":{"name":"Stochastic Models","volume":"38 1","pages":"70 - 90"},"PeriodicalIF":0.5000,"publicationDate":"2021-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Integer-valued autoregressive processes with prespecified marginal and innovation distributions: a novel perspective\",\"authors\":\"Matheus B. Guerrero, W. Barreto‐Souza, H. Ombao\",\"doi\":\"10.1080/15326349.2021.1977141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Integer-valued autoregressive (INAR) processes are generally defined by specifying the thinning operator and either the innovations or the marginal distributions. The major limitations of such processes include difficulties in deriving the marginal properties and justifying the choice of the thinning operator. To overcome these drawbacks, we propose a novel approach for building an INAR model that offers the flexibility to prespecify both marginal and innovation distributions. Thus, the thinning operator is no longer subjectively selected but is rather a direct consequence of the marginal and innovation distributions specified by the modeler. Novel INAR processes are introduced following this perspective; these processes include a model with geometric marginal and innovation distributions (Geo-INAR) and models with bounded innovations. We explore the Geo-INAR model, which is a natural alternative to the classical Poisson INAR model. The Geo-INAR process has interesting stochastic properties, such as MA( ) representation, time reversibility, and closed forms for the -order transition probabilities, which enables a natural framework to perform coherent forecasting. To demonstrate the real-world application of the Geo-INAR model, we analyze a count time series of criminal records in sex offenses using the proposed methodology and compare it with existing INAR and integer-valued generalized autoregressive conditional heteroscedastic models.\",\"PeriodicalId\":21970,\"journal\":{\"name\":\"Stochastic Models\",\"volume\":\"38 1\",\"pages\":\"70 - 90\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/15326349.2021.1977141\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2021.1977141","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Integer-valued autoregressive processes with prespecified marginal and innovation distributions: a novel perspective
Abstract Integer-valued autoregressive (INAR) processes are generally defined by specifying the thinning operator and either the innovations or the marginal distributions. The major limitations of such processes include difficulties in deriving the marginal properties and justifying the choice of the thinning operator. To overcome these drawbacks, we propose a novel approach for building an INAR model that offers the flexibility to prespecify both marginal and innovation distributions. Thus, the thinning operator is no longer subjectively selected but is rather a direct consequence of the marginal and innovation distributions specified by the modeler. Novel INAR processes are introduced following this perspective; these processes include a model with geometric marginal and innovation distributions (Geo-INAR) and models with bounded innovations. We explore the Geo-INAR model, which is a natural alternative to the classical Poisson INAR model. The Geo-INAR process has interesting stochastic properties, such as MA( ) representation, time reversibility, and closed forms for the -order transition probabilities, which enables a natural framework to perform coherent forecasting. To demonstrate the real-world application of the Geo-INAR model, we analyze a count time series of criminal records in sex offenses using the proposed methodology and compare it with existing INAR and integer-valued generalized autoregressive conditional heteroscedastic models.
期刊介绍:
Stochastic Models publishes papers discussing the theory and applications of probability as they arise in the modeling of phenomena in the natural sciences, social sciences and technology. It presents novel contributions to mathematical theory, using structural, analytical, algorithmic or experimental approaches. In an interdisciplinary context, it discusses practical applications of stochastic models to diverse areas such as biology, computer science, telecommunications modeling, inventories and dams, reliability, storage, queueing theory, mathematical finance and operations research.