软件定义的雾平台

Sepideh Sheikhi Nejad, Ahmad Khademzadeh, A. Rahmani, A. Broumandnia
{"title":"软件定义的雾平台","authors":"Sepideh Sheikhi Nejad, Ahmad Khademzadeh, A. Rahmani, A. Broumandnia","doi":"10.11591/ijece.v13i5.pp5454-5461","DOIUrl":null,"url":null,"abstract":"In recent years, the number of end users connected to the internet of things (IoT) has increased, and we have witnessed the emergence of the cloud computing paradigm. These users utilize network resources to meet their quality of service (QoS) requirements, but traditional networks are not configured to backing maximum of scalability, real-time data transfer, and dynamism, resulting in numerous challenges. This research presents a new platform of IoT architecture that adds the benefits of two new technologies: software-defined networking and fog paradigm. Software-defined networking (SDN) refers to a centralized control layer of the network that enables sophisticated methods for traffic control and resource allocation. So, fog paradigm allows for data to be analyzed and managed at the edge of the network, making it suitable for tasks that require low and predictable delay. Thus, this research provides an in-depth view of the platform organize and performance of its base ingredients, as well as the potential uses of the suggested platform in various applications.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Software defined fog platform\",\"authors\":\"Sepideh Sheikhi Nejad, Ahmad Khademzadeh, A. Rahmani, A. Broumandnia\",\"doi\":\"10.11591/ijece.v13i5.pp5454-5461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the number of end users connected to the internet of things (IoT) has increased, and we have witnessed the emergence of the cloud computing paradigm. These users utilize network resources to meet their quality of service (QoS) requirements, but traditional networks are not configured to backing maximum of scalability, real-time data transfer, and dynamism, resulting in numerous challenges. This research presents a new platform of IoT architecture that adds the benefits of two new technologies: software-defined networking and fog paradigm. Software-defined networking (SDN) refers to a centralized control layer of the network that enables sophisticated methods for traffic control and resource allocation. So, fog paradigm allows for data to be analyzed and managed at the edge of the network, making it suitable for tasks that require low and predictable delay. Thus, this research provides an in-depth view of the platform organize and performance of its base ingredients, as well as the potential uses of the suggested platform in various applications.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5454-5461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5454-5461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

近年来,连接到物联网(IoT)的最终用户数量有所增加,我们见证了云计算范式的出现。这些用户利用网络资源来满足他们的服务质量(QoS)要求,但传统网络没有配置为支持最大限度的可扩展性、实时数据传输和动态性,这导致了许多挑战。这项研究提供了一个新的物联网架构平台,它增加了两种新技术的优势:软件定义的网络和雾范式。软件定义网络(SDN)指的是网络的集中控制层,它能够实现复杂的流量控制和资源分配方法。因此,雾范式允许在网络边缘分析和管理数据,使其适用于需要低延迟和可预测延迟的任务。因此,本研究深入了解了平台的组织及其基本成分的性能,以及所建议的平台在各种应用中的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Software defined fog platform
In recent years, the number of end users connected to the internet of things (IoT) has increased, and we have witnessed the emergence of the cloud computing paradigm. These users utilize network resources to meet their quality of service (QoS) requirements, but traditional networks are not configured to backing maximum of scalability, real-time data transfer, and dynamism, resulting in numerous challenges. This research presents a new platform of IoT architecture that adds the benefits of two new technologies: software-defined networking and fog paradigm. Software-defined networking (SDN) refers to a centralized control layer of the network that enables sophisticated methods for traffic control and resource allocation. So, fog paradigm allows for data to be analyzed and managed at the edge of the network, making it suitable for tasks that require low and predictable delay. Thus, this research provides an in-depth view of the platform organize and performance of its base ingredients, as well as the potential uses of the suggested platform in various applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
期刊最新文献
Ranking load in microgrid based on fuzzy analytic hierarchy process and technique for order of preference by similarity to ideal solution algorithm for load shedding problem Explainable extreme boosting model for breast cancer diagnosis Automatic optical inspection for detecting keycaps misplacement using Tesseract optical character recognition A thermally aware performance analysis of quantum cellular automata logic gates Technical and market evaluation of thermal generation power plants in the Colombia power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1