评估中国、马来西亚、新加坡和泰国的行业系统性风险

IF 2 0 ECONOMICS Annals of Financial Economics Pub Date : 2019-08-01 DOI:10.1142/S2010495219500118
T. Pham, D. Vo
{"title":"评估中国、马来西亚、新加坡和泰国的行业系统性风险","authors":"T. Pham, D. Vo","doi":"10.1142/S2010495219500118","DOIUrl":null,"url":null,"abstract":"This study examines the relative systematic risks of 10 industries in China and ASEAN-3, including Malaysia, Singapore, and Thailand. We use four different approaches (ordinary least squares, least absolute deviations, MM-estimator and Theil–Sen estimator) and the weekly data from 2004 to 2016 to determine the sectoral systematic risk. The data are also divided into four sub-periods: the pre-crisis, crisis, post-crisis and normal periods. We find that the rankings of systematic risk, and the risk–return framework, for 10 industries vary from one country to another. The pairwise correlation analysis shows that significant correlation of sectoral ranks between estimation methods is found in China and Thailand, but not in Malaysia and Singapore. However, no correlations of industry rankings between China and ASEAN-3 countries for all the estimation methods for the full research periods and sub-periods are found. The sub-periods analysis also suggests that the rankings of systematic risk for industries in four countries across different economic periods are unstable.","PeriodicalId":43570,"journal":{"name":"Annals of Financial Economics","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2010495219500118","citationCount":"0","resultStr":"{\"title\":\"ESTIMATING SECTORAL SYSTEMATIC RISK FOR CHINA, MALAYSIA, SINGAPORE, AND THAILAND\",\"authors\":\"T. Pham, D. Vo\",\"doi\":\"10.1142/S2010495219500118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the relative systematic risks of 10 industries in China and ASEAN-3, including Malaysia, Singapore, and Thailand. We use four different approaches (ordinary least squares, least absolute deviations, MM-estimator and Theil–Sen estimator) and the weekly data from 2004 to 2016 to determine the sectoral systematic risk. The data are also divided into four sub-periods: the pre-crisis, crisis, post-crisis and normal periods. We find that the rankings of systematic risk, and the risk–return framework, for 10 industries vary from one country to another. The pairwise correlation analysis shows that significant correlation of sectoral ranks between estimation methods is found in China and Thailand, but not in Malaysia and Singapore. However, no correlations of industry rankings between China and ASEAN-3 countries for all the estimation methods for the full research periods and sub-periods are found. The sub-periods analysis also suggests that the rankings of systematic risk for industries in four countries across different economic periods are unstable.\",\"PeriodicalId\":43570,\"journal\":{\"name\":\"Annals of Financial Economics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S2010495219500118\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Financial Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010495219500118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Financial Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2010495219500118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了中国和东盟三国(包括马来西亚、新加坡和泰国)10个行业的相对系统性风险。我们使用四种不同的方法(普通最小二乘、最小绝对偏差、mm估计和Theil-Sen估计)和2004 - 2016年的每周数据来确定行业系统风险。数据还分为四个子时期:危机前、危机后、危机后和正常时期。我们发现,10个行业的系统风险排名和风险回报框架因国家而异。两两相关分析表明,中国和泰国的估计方法之间的行业排名存在显著相关性,而马来西亚和新加坡则没有。然而,在整个研究期和子期的所有估计方法中,中国与东盟-3国家之间的行业排名都没有相关性。分时期分析还表明,四个国家在不同经济时期的行业系统风险排名是不稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ESTIMATING SECTORAL SYSTEMATIC RISK FOR CHINA, MALAYSIA, SINGAPORE, AND THAILAND
This study examines the relative systematic risks of 10 industries in China and ASEAN-3, including Malaysia, Singapore, and Thailand. We use four different approaches (ordinary least squares, least absolute deviations, MM-estimator and Theil–Sen estimator) and the weekly data from 2004 to 2016 to determine the sectoral systematic risk. The data are also divided into four sub-periods: the pre-crisis, crisis, post-crisis and normal periods. We find that the rankings of systematic risk, and the risk–return framework, for 10 industries vary from one country to another. The pairwise correlation analysis shows that significant correlation of sectoral ranks between estimation methods is found in China and Thailand, but not in Malaysia and Singapore. However, no correlations of industry rankings between China and ASEAN-3 countries for all the estimation methods for the full research periods and sub-periods are found. The sub-periods analysis also suggests that the rankings of systematic risk for industries in four countries across different economic periods are unstable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
55.00%
发文量
30
期刊最新文献
How Do Remittance Inflows Cause the Dutch Disease in the Financial Sector? The Role of Financial Risk and Human Capital Factors Affecting the Crude Oil Prices Volatility: A Case Study of the USA, China, Japan, Germany and India The Emerging Stock Markets and Their Asymmetric Response to Infectious Disease Equity Market Volatility (ID-EMV) Index Greenhouse Gas Emissions and the Rising Effects of Renewable Energy Consumption and Climate Risk Development Finance: Evidence from BRICS Countries Potential Welfare Gains from Optimal Macro Hedging for Oil Exporters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1