一维热声燃烧室模型的分布传递函数方法

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS Combustion Theory and Modelling Pub Date : 2022-12-14 DOI:10.1080/13647830.2022.2156930
M. Yoon
{"title":"一维热声燃烧室模型的分布传递函数方法","authors":"M. Yoon","doi":"10.1080/13647830.2022.2156930","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach for one-dimensional thermoacoustic combustor models. Our new model is a transfer function estimated from the frequency response of the linearised Euler equation to a spatially normalised and temporally impulsive input. The proposed approach can deal with combustors with varying cross-sectional areas under a non-zero mean flow, distributed heating/cooling, and outlet boundary conditions involving entropy waves, overcoming limitations of the popular network model. In addition our new approach can provide a more reliable thermoacoustic model for combustors with entropy-related boundary conditions, remedying the inaccurate entropy model of the network model. Numerical comparisons of our new model with a network model show apparent similarities between the two, validating the new model. It is also observed that, compared to our new model, the network model is more sensitive to mean flow and significantly overestimates the entropy wave effects on combustor acoustics.","PeriodicalId":50665,"journal":{"name":"Combustion Theory and Modelling","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed transfer function approach for one-dimensional thermoacoustic combustor models\",\"authors\":\"M. Yoon\",\"doi\":\"10.1080/13647830.2022.2156930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new approach for one-dimensional thermoacoustic combustor models. Our new model is a transfer function estimated from the frequency response of the linearised Euler equation to a spatially normalised and temporally impulsive input. The proposed approach can deal with combustors with varying cross-sectional areas under a non-zero mean flow, distributed heating/cooling, and outlet boundary conditions involving entropy waves, overcoming limitations of the popular network model. In addition our new approach can provide a more reliable thermoacoustic model for combustors with entropy-related boundary conditions, remedying the inaccurate entropy model of the network model. Numerical comparisons of our new model with a network model show apparent similarities between the two, validating the new model. It is also observed that, compared to our new model, the network model is more sensitive to mean flow and significantly overestimates the entropy wave effects on combustor acoustics.\",\"PeriodicalId\":50665,\"journal\":{\"name\":\"Combustion Theory and Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion Theory and Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/13647830.2022.2156930\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion Theory and Modelling","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13647830.2022.2156930","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种一维热声燃烧室模型的新方法。我们的新模型是从线性化欧拉方程的频率响应估计到空间归一化和时间脉冲输入的传递函数。所提出的方法可以在非零平均流量、分布式加热/冷却和涉及熵波的出口边界条件下处理具有不同横截面积的燃烧器,克服了流行网络模型的局限性。此外,我们的新方法可以为具有熵相关边界条件的燃烧器提供一个更可靠的热声模型,纠正了网络模型中不准确的熵模型。我们的新模型与网络模型的数值比较表明,两者之间有明显的相似性,验证了新模型。还观察到,与我们的新模型相比,网络模型对平均流量更敏感,并且显著高估了熵波对燃烧器声学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed transfer function approach for one-dimensional thermoacoustic combustor models
This paper proposes a new approach for one-dimensional thermoacoustic combustor models. Our new model is a transfer function estimated from the frequency response of the linearised Euler equation to a spatially normalised and temporally impulsive input. The proposed approach can deal with combustors with varying cross-sectional areas under a non-zero mean flow, distributed heating/cooling, and outlet boundary conditions involving entropy waves, overcoming limitations of the popular network model. In addition our new approach can provide a more reliable thermoacoustic model for combustors with entropy-related boundary conditions, remedying the inaccurate entropy model of the network model. Numerical comparisons of our new model with a network model show apparent similarities between the two, validating the new model. It is also observed that, compared to our new model, the network model is more sensitive to mean flow and significantly overestimates the entropy wave effects on combustor acoustics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion Theory and Modelling
Combustion Theory and Modelling 工程技术-工程:化工
CiteScore
3.00
自引率
7.70%
发文量
38
审稿时长
6 months
期刊介绍: Combustion Theory and Modelling is a leading international journal devoted to the application of mathematical modelling, numerical simulation and experimental techniques to the study of combustion. Articles can cover a wide range of topics, such as: premixed laminar flames, laminar diffusion flames, turbulent combustion, fires, chemical kinetics, pollutant formation, microgravity, materials synthesis, chemical vapour deposition, catalysis, droplet and spray combustion, detonation dynamics, thermal explosions, ignition, energetic materials and propellants, burners and engine combustion. A diverse spectrum of mathematical methods may also be used, including large scale numerical simulation, hybrid computational schemes, front tracking, adaptive mesh refinement, optimized parallel computation, asymptotic methods and singular perturbation techniques, bifurcation theory, optimization methods, dynamical systems theory, cellular automata and discrete methods and probabilistic and statistical methods. Experimental studies that employ intrusive or nonintrusive diagnostics and are published in the Journal should be closely related to theoretical issues, by highlighting fundamental theoretical questions or by providing a sound basis for comparison with theory.
期刊最新文献
LES of premixed jet flames subjected to extreme turbulence using flamelet-generated manifolds: a comparison of unstrained and strained flamelets Effect of ethanol enrichment and engine parameters on the performance of an HCCI engine fuelled with biodiesel/ethanol mixtures Determining the global activation energy of methane–air premixed flames Simulation of reaction initiation in powder compacting from the surface with composite formation in equivalent reaction cell Updated asymptotic structure of cool diffusion flames
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1