贷款定价中抵押贷款软信息对机器学习违约预测的影响

IF 1.8 4区 经济学 Q2 BUSINESS, FINANCE International Review of Finance Pub Date : 2022-09-18 DOI:10.1111/irfi.12392
Thi Mai Luong, Harald Scheule, Nitya Wanzare
{"title":"贷款定价中抵押贷款软信息对机器学习违约预测的影响","authors":"Thi Mai Luong,&nbsp;Harald Scheule,&nbsp;Nitya Wanzare","doi":"10.1111/irfi.12392","DOIUrl":null,"url":null,"abstract":"<p>We analyze the impact of soft information on US mortgages for default prediction and provide a new measure for lender soft information that is based on the interest rates offered to borrowers and incremental to public hard information. Hard and soft information provide for a variation in annual default probabilities of approximately 3%. Soft information has a lesser impact over time and time since origination. Lenders rely more on soft information for high-risk borrowers. Our study evidences the importance of soft information collected at loan origination.</p>","PeriodicalId":46664,"journal":{"name":"International Review of Finance","volume":"23 1","pages":"158-186"},"PeriodicalIF":1.8000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/irfi.12392","citationCount":"1","resultStr":"{\"title\":\"Impact of mortgage soft information in loan pricing on default prediction using machine learning\",\"authors\":\"Thi Mai Luong,&nbsp;Harald Scheule,&nbsp;Nitya Wanzare\",\"doi\":\"10.1111/irfi.12392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We analyze the impact of soft information on US mortgages for default prediction and provide a new measure for lender soft information that is based on the interest rates offered to borrowers and incremental to public hard information. Hard and soft information provide for a variation in annual default probabilities of approximately 3%. Soft information has a lesser impact over time and time since origination. Lenders rely more on soft information for high-risk borrowers. Our study evidences the importance of soft information collected at loan origination.</p>\",\"PeriodicalId\":46664,\"journal\":{\"name\":\"International Review of Finance\",\"volume\":\"23 1\",\"pages\":\"158-186\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/irfi.12392\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/irfi.12392\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/irfi.12392","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1

摘要

我们分析了软信息对美国抵押贷款违约预测的影响,并提供了一种基于向借款人提供的利率和公共硬信息增量的贷方软信息的新措施。硬数据和软数据显示,年违约概率的变化幅度约为3%。随着时间的推移,软信息的影响会越来越小。对于高风险借款人,贷款机构更多地依赖软信息。我们的研究证明了贷款发起时收集的软信息的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of mortgage soft information in loan pricing on default prediction using machine learning

We analyze the impact of soft information on US mortgages for default prediction and provide a new measure for lender soft information that is based on the interest rates offered to borrowers and incremental to public hard information. Hard and soft information provide for a variation in annual default probabilities of approximately 3%. Soft information has a lesser impact over time and time since origination. Lenders rely more on soft information for high-risk borrowers. Our study evidences the importance of soft information collected at loan origination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Review of Finance
International Review of Finance BUSINESS, FINANCE-
CiteScore
3.30
自引率
5.90%
发文量
28
期刊介绍: The International Review of Finance (IRF) publishes high-quality research on all aspects of financial economics, including traditional areas such as asset pricing, corporate finance, market microstructure, financial intermediation and regulation, financial econometrics, financial engineering and risk management, as well as new areas such as markets and institutions of emerging market economies, especially those in the Asia-Pacific region. In addition, the Letters Section in IRF is a premium outlet of letter-length research in all fields of finance. The length of the articles in the Letters Section is limited to a maximum of eight journal pages.
期刊最新文献
The impact of country level investor protection on economic policy uncertainty and corporate investment link Issue Information Trust in the retirement system and investment decisions of property investors Do passive investors influence corporate social responsibility? A risk‐management perspective The impact of democracy on liquidity and information asymmetry for NYSE cross‐listed stocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1