{"title":"微量分析技术保证了嫦娥五号月球样本的长期研究","authors":"Wei Yang, Jinhua Li, Xiong-Yao Li, Yong He","doi":"10.46770/as.2022.025","DOIUrl":null,"url":null,"abstract":"Humans have successfully returned samples from the Moon ten times. Sample return missions have two advantages. First, we can carry out high-resolution and high-precision measurements of returned samples using state-of-the-art technologies in the laboratory. Second, the returned samples can support ongoing research for decades or centuries. The same sample can continuously “tell new stories” with the advancement of technology. On July 12, 2021, the allocation of the first batch of Chang'e-5 lunar samples quickly ignited a research bonanza for lunar and planetary sciences in China. State-of-the-art microanalysis techniques have played important roles in both scientific research and the artistic creation of lunar samples. For example, the combination of micro-X-ray fluorescence (μXRF), 3D X-ray microscopy (XRM), and scanning electron microscopy the rapid screening and positioning of Zr-bearing minerals for U-Pb dating. The high spatial resolution U-Pb dating method by secondary ion mass spectrometry it possible to determine the crystallization age of tiny (< tomography; 27 (4) trace element analyses by instrumental neutron activation analysis; 28 (5) high-resolution Cl isotope analyses by NanoSIMS 29 and high-precision C isotope analyses by SIMS; 30 (6) combined separation for high-precision iron, calcium, and magnesium isotope analyses; 31 (7) measurements of thermal-induced alterations by in situ TEM heating; 32 and (8) identification of lunar highland clasts in CE-5 breccias by TIMA-SEM-EPMA.","PeriodicalId":8642,"journal":{"name":"Atomic Spectroscopy","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microanalysis Techniques Guarantee Long-Term Research On Chang’e-5 Lunar Samples\",\"authors\":\"Wei Yang, Jinhua Li, Xiong-Yao Li, Yong He\",\"doi\":\"10.46770/as.2022.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans have successfully returned samples from the Moon ten times. Sample return missions have two advantages. First, we can carry out high-resolution and high-precision measurements of returned samples using state-of-the-art technologies in the laboratory. Second, the returned samples can support ongoing research for decades or centuries. The same sample can continuously “tell new stories” with the advancement of technology. On July 12, 2021, the allocation of the first batch of Chang'e-5 lunar samples quickly ignited a research bonanza for lunar and planetary sciences in China. State-of-the-art microanalysis techniques have played important roles in both scientific research and the artistic creation of lunar samples. For example, the combination of micro-X-ray fluorescence (μXRF), 3D X-ray microscopy (XRM), and scanning electron microscopy the rapid screening and positioning of Zr-bearing minerals for U-Pb dating. The high spatial resolution U-Pb dating method by secondary ion mass spectrometry it possible to determine the crystallization age of tiny (< tomography; 27 (4) trace element analyses by instrumental neutron activation analysis; 28 (5) high-resolution Cl isotope analyses by NanoSIMS 29 and high-precision C isotope analyses by SIMS; 30 (6) combined separation for high-precision iron, calcium, and magnesium isotope analyses; 31 (7) measurements of thermal-induced alterations by in situ TEM heating; 32 and (8) identification of lunar highland clasts in CE-5 breccias by TIMA-SEM-EPMA.\",\"PeriodicalId\":8642,\"journal\":{\"name\":\"Atomic Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomic Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.46770/as.2022.025\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46770/as.2022.025","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Microanalysis Techniques Guarantee Long-Term Research On Chang’e-5 Lunar Samples
Humans have successfully returned samples from the Moon ten times. Sample return missions have two advantages. First, we can carry out high-resolution and high-precision measurements of returned samples using state-of-the-art technologies in the laboratory. Second, the returned samples can support ongoing research for decades or centuries. The same sample can continuously “tell new stories” with the advancement of technology. On July 12, 2021, the allocation of the first batch of Chang'e-5 lunar samples quickly ignited a research bonanza for lunar and planetary sciences in China. State-of-the-art microanalysis techniques have played important roles in both scientific research and the artistic creation of lunar samples. For example, the combination of micro-X-ray fluorescence (μXRF), 3D X-ray microscopy (XRM), and scanning electron microscopy the rapid screening and positioning of Zr-bearing minerals for U-Pb dating. The high spatial resolution U-Pb dating method by secondary ion mass spectrometry it possible to determine the crystallization age of tiny (< tomography; 27 (4) trace element analyses by instrumental neutron activation analysis; 28 (5) high-resolution Cl isotope analyses by NanoSIMS 29 and high-precision C isotope analyses by SIMS; 30 (6) combined separation for high-precision iron, calcium, and magnesium isotope analyses; 31 (7) measurements of thermal-induced alterations by in situ TEM heating; 32 and (8) identification of lunar highland clasts in CE-5 breccias by TIMA-SEM-EPMA.
期刊介绍:
The ATOMIC SPECTROSCOPY is a peer-reviewed international journal started in 1962 by Dr. Walter Slavin and now is published by Atomic Spectroscopy Press Limited (ASPL). It is intended for the rapid publication of both original articles and review articles in the fields of AAS, AFS, ICP-OES, ICP-MS, GD-MS, TIMS, SIMS, AMS, LIBS, XRF and related techniques. Manuscripts dealing with (i) instrumentation & fundamentals, (ii) methodology development & applications, and (iii) standard reference materials (SRMs) development can be submitted for publication.