{"title":"一种化学信息混合机器学习方法,用于预测金属在矿物表面的吸附","authors":"Elliot Chang , Mavrik Zavarin , Linda Beverly , Haruko Wainwright","doi":"10.1016/j.apgeochem.2023.105731","DOIUrl":null,"url":null,"abstract":"<div><p>Historically, surface complexation model (SCM) constants and distribution coefficients (K<sub>d</sub>) have been employed to quantify mineral-based retardation effects controlling the fate of metals in subsurface geologic systems. Our recent SCM development workflow, based on the Lawrence Livermore National Laboratory Surface Complexation/Ion Exchange (L-SCIE) database, illustrated a community FAIR data approach to SCM development by predicting uranium(VI)-quartz adsorption for a large number of literature-mined data. Here, we present an alternative hybrid machine learning (ML) approach that shows promise in achieving equivalent high-quality predictions compared to traditional surface complexation models. At its core, the hybrid random forest (RF) ML approach is motivated by the proliferation of incongruent SCMs in the literature that limit their applicability in reactive transport models. Our hybrid ML approach implements PHREEQC-based aqueous speciation calculations; values from these simulations are automatically used as input features for a random forest (RF) algorithm to quantify adsorption and avoid SCM modeling constraints entirely. Named the LLNL Speciation Updated Random Forest (L-SURF) model, this hybrid approach is shown to have applicability to U(VI) sorption cases driven by both ion-exchange and surface complexation, as is shown for quartz and montmorillonite cases. The approach can be applied to reactive transport modeling and may provide an alternative to the costly development of self-consistent SCM reaction databases.</p></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"155 ","pages":"Article 105731"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A chemistry-informed hybrid machine learning approach to predict metal adsorption onto mineral surfaces\",\"authors\":\"Elliot Chang , Mavrik Zavarin , Linda Beverly , Haruko Wainwright\",\"doi\":\"10.1016/j.apgeochem.2023.105731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Historically, surface complexation model (SCM) constants and distribution coefficients (K<sub>d</sub>) have been employed to quantify mineral-based retardation effects controlling the fate of metals in subsurface geologic systems. Our recent SCM development workflow, based on the Lawrence Livermore National Laboratory Surface Complexation/Ion Exchange (L-SCIE) database, illustrated a community FAIR data approach to SCM development by predicting uranium(VI)-quartz adsorption for a large number of literature-mined data. Here, we present an alternative hybrid machine learning (ML) approach that shows promise in achieving equivalent high-quality predictions compared to traditional surface complexation models. At its core, the hybrid random forest (RF) ML approach is motivated by the proliferation of incongruent SCMs in the literature that limit their applicability in reactive transport models. Our hybrid ML approach implements PHREEQC-based aqueous speciation calculations; values from these simulations are automatically used as input features for a random forest (RF) algorithm to quantify adsorption and avoid SCM modeling constraints entirely. Named the LLNL Speciation Updated Random Forest (L-SURF) model, this hybrid approach is shown to have applicability to U(VI) sorption cases driven by both ion-exchange and surface complexation, as is shown for quartz and montmorillonite cases. The approach can be applied to reactive transport modeling and may provide an alternative to the costly development of self-consistent SCM reaction databases.</p></div>\",\"PeriodicalId\":8064,\"journal\":{\"name\":\"Applied Geochemistry\",\"volume\":\"155 \",\"pages\":\"Article 105731\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0883292723001762\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292723001762","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A chemistry-informed hybrid machine learning approach to predict metal adsorption onto mineral surfaces
Historically, surface complexation model (SCM) constants and distribution coefficients (Kd) have been employed to quantify mineral-based retardation effects controlling the fate of metals in subsurface geologic systems. Our recent SCM development workflow, based on the Lawrence Livermore National Laboratory Surface Complexation/Ion Exchange (L-SCIE) database, illustrated a community FAIR data approach to SCM development by predicting uranium(VI)-quartz adsorption for a large number of literature-mined data. Here, we present an alternative hybrid machine learning (ML) approach that shows promise in achieving equivalent high-quality predictions compared to traditional surface complexation models. At its core, the hybrid random forest (RF) ML approach is motivated by the proliferation of incongruent SCMs in the literature that limit their applicability in reactive transport models. Our hybrid ML approach implements PHREEQC-based aqueous speciation calculations; values from these simulations are automatically used as input features for a random forest (RF) algorithm to quantify adsorption and avoid SCM modeling constraints entirely. Named the LLNL Speciation Updated Random Forest (L-SURF) model, this hybrid approach is shown to have applicability to U(VI) sorption cases driven by both ion-exchange and surface complexation, as is shown for quartz and montmorillonite cases. The approach can be applied to reactive transport modeling and may provide an alternative to the costly development of self-consistent SCM reaction databases.
期刊介绍:
Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application.
Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.