慢性伤口的蛆疗法:历史实践的新方法

IF 3 3区 农林科学 Q1 ENTOMOLOGY Annals of The Entomological Society of America Pub Date : 2021-04-01 DOI:10.1093/aesa/saab012
M. Harvey, I. Dadour, N. Gasz
{"title":"慢性伤口的蛆疗法:历史实践的新方法","authors":"M. Harvey, I. Dadour, N. Gasz","doi":"10.1093/aesa/saab012","DOIUrl":null,"url":null,"abstract":"Abstract Blowfly larvae of Lucilia sericata (Meigen) (Diptera: Calliphoridae) are well established as debridement agents in nonhealing wounds. Maggot therapy (MT) experienced reduced application following adoption of Penicillin and other antibiotics, but the advent of antibiotic resistance and the growing global wound burden have boosted demand for new therapies. The mechanisms of action are well accepted, with debridement, disinfection, biofilm destruction, and inhibition, as well as the stimulation of tissue growth uniformly acknowledged as a remarkable biotherapy. The mechanisms of action, while well-recognized, are still being examined. The efforts to understand isolated aspects of a complex system, have resulted in a tendency to approach the field from simplified viewpoints that remove the holistic system of the larvae. Furthermore, clinical studies have conflated wound debridement and healing in definitions of ‘success'. Thus, both in vitro and clinical studies have reported mixed results, presenting some uncertainty regarding the utility of MT that prohibits routine clinical adoption. This review builds from the generally accepted basic mechanisms to justify a future for MT that encompasses larval-bacterial symbioses as the basis to a holistic system. Symbioses are well documented in the Insecta, and literature in MT supports the existence of established symbiotic associations that provide enhanced debridement action. The future of MT requires consideration of a biological system that confers enhanced antimicrobial action on larvae when selective pre-exposure to carefully selected symbionts is adopted. In treating contemporary infections, there is much to be gained from reflecting on the natural biology of the organism, as MT was used with success long before we sterilized the system.","PeriodicalId":8076,"journal":{"name":"Annals of The Entomological Society of America","volume":"114 1","pages":"415 - 424"},"PeriodicalIF":3.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/aesa/saab012","citationCount":"5","resultStr":"{\"title\":\"Maggot Therapy in Chronic Wounds: New Approaches to Historical Practices\",\"authors\":\"M. Harvey, I. Dadour, N. Gasz\",\"doi\":\"10.1093/aesa/saab012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Blowfly larvae of Lucilia sericata (Meigen) (Diptera: Calliphoridae) are well established as debridement agents in nonhealing wounds. Maggot therapy (MT) experienced reduced application following adoption of Penicillin and other antibiotics, but the advent of antibiotic resistance and the growing global wound burden have boosted demand for new therapies. The mechanisms of action are well accepted, with debridement, disinfection, biofilm destruction, and inhibition, as well as the stimulation of tissue growth uniformly acknowledged as a remarkable biotherapy. The mechanisms of action, while well-recognized, are still being examined. The efforts to understand isolated aspects of a complex system, have resulted in a tendency to approach the field from simplified viewpoints that remove the holistic system of the larvae. Furthermore, clinical studies have conflated wound debridement and healing in definitions of ‘success'. Thus, both in vitro and clinical studies have reported mixed results, presenting some uncertainty regarding the utility of MT that prohibits routine clinical adoption. This review builds from the generally accepted basic mechanisms to justify a future for MT that encompasses larval-bacterial symbioses as the basis to a holistic system. Symbioses are well documented in the Insecta, and literature in MT supports the existence of established symbiotic associations that provide enhanced debridement action. The future of MT requires consideration of a biological system that confers enhanced antimicrobial action on larvae when selective pre-exposure to carefully selected symbionts is adopted. In treating contemporary infections, there is much to be gained from reflecting on the natural biology of the organism, as MT was used with success long before we sterilized the system.\",\"PeriodicalId\":8076,\"journal\":{\"name\":\"Annals of The Entomological Society of America\",\"volume\":\"114 1\",\"pages\":\"415 - 424\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/aesa/saab012\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of The Entomological Society of America\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/aesa/saab012\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of The Entomological Society of America","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/aesa/saab012","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

摘要绢绿蝇(Lucilia sericata, Meigen)(双翅目:绢绿蝇科)的飞蝇幼虫在未愈合的伤口中具有良好的清创作用。在采用青霉素和其他抗生素后,蛆疗法的应用减少了,但抗生素耐药性的出现和全球伤口负担的增加促进了对新疗法的需求。其作用机制被广泛接受,清创、消毒、生物膜破坏和抑制,以及刺激组织生长被一致认为是一种显著的生物疗法。这些作用机制虽然得到公认,但仍在审查中。努力了解一个复杂系统的孤立方面,导致了一种倾向,即从简化的角度来看待这个领域,从而消除了幼虫的整体系统。此外,临床研究在“成功”的定义中混淆了伤口清创和愈合。因此,体外和临床研究都报告了不同的结果,对MT的效用提出了一些不确定性,禁止常规临床采用。这篇综述从普遍接受的基本机制来证明MT的未来,包括幼虫-细菌共生作为整体系统的基础。共生关系在昆虫中有很好的记录,MT文献支持已建立的共生关系的存在,这种共生关系提供了增强的清创作用。MT的未来需要考虑一种生物系统,当采用选择性预暴露于精心挑选的共生体时,该生物系统可以增强对幼虫的抗菌作用。在治疗当代感染时,从反思生物体的自然生物学中可以获得很多东西,因为MT在我们对系统进行消毒之前就已经成功使用了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maggot Therapy in Chronic Wounds: New Approaches to Historical Practices
Abstract Blowfly larvae of Lucilia sericata (Meigen) (Diptera: Calliphoridae) are well established as debridement agents in nonhealing wounds. Maggot therapy (MT) experienced reduced application following adoption of Penicillin and other antibiotics, but the advent of antibiotic resistance and the growing global wound burden have boosted demand for new therapies. The mechanisms of action are well accepted, with debridement, disinfection, biofilm destruction, and inhibition, as well as the stimulation of tissue growth uniformly acknowledged as a remarkable biotherapy. The mechanisms of action, while well-recognized, are still being examined. The efforts to understand isolated aspects of a complex system, have resulted in a tendency to approach the field from simplified viewpoints that remove the holistic system of the larvae. Furthermore, clinical studies have conflated wound debridement and healing in definitions of ‘success'. Thus, both in vitro and clinical studies have reported mixed results, presenting some uncertainty regarding the utility of MT that prohibits routine clinical adoption. This review builds from the generally accepted basic mechanisms to justify a future for MT that encompasses larval-bacterial symbioses as the basis to a holistic system. Symbioses are well documented in the Insecta, and literature in MT supports the existence of established symbiotic associations that provide enhanced debridement action. The future of MT requires consideration of a biological system that confers enhanced antimicrobial action on larvae when selective pre-exposure to carefully selected symbionts is adopted. In treating contemporary infections, there is much to be gained from reflecting on the natural biology of the organism, as MT was used with success long before we sterilized the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
25
审稿时长
6-12 weeks
期刊介绍: The Annals of the Entomological Society of America exists to stimulate interdisciplinary dialogue across the entomological disciplines and to advance cooperative interaction among diverse groups of entomologists. It seeks to attract and publish cutting-edge research, reviews, collections of articles on a common topic of broad interest, and discussion of topics with national or international importance. We especially welcome articles covering developing areas of research, controversial issues or debate, and topics of importance to society. Manuscripts that are primarily reports of new species, methodology, pest management, or the biology of single species generally will be referred to other journals of the ESA. The most important criteria for acceptance are quality of work and breadth of interest to the readership.
期刊最新文献
Broad host use and frequent polyandry in the facultative dulotic species Formica aserva (Hymenoptera: Formicidae). Why all lawyers must study entomology. Bee monitoring by community scientists: comparing a collections-based program with iNaturalist. Analysis of vasoactive and oxidative stress indicators for evaluating the efficacy of continuous positive airway pressure, and relation of vasoactive and oxidative stress indicators and cardiac function in obstructive sleep Apnea Syndrome patients. Effects of study design parameters on estimates of bee abundance and richness in agroecosystems: a meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1