{"title":"石英晶粒表面霜致微织构的多阶段演化实验研究","authors":"M. Górska, B. Woronko","doi":"10.1002/ppp.2164","DOIUrl":null,"url":null,"abstract":"Coarse sand‐sized (0.5–1.0 mm) grains of vein quartz were subjected to frost‐induced stress under controlled laboratory conditions. A total of 1,000 freeze–thaw (FT) cycles, simulated under different (low, high) water mineralization conditions in the temperature range from −5°C up to +10°C, were used to test effects on collected samples. Scanning electron microscopic (SEM) microtextural analysis of grain surfaces was performed at 0 (start) and after 50, 100, 300, 700, and 1,000 FT cycles. The results indicate that variable frost‐induced microtextural imprints encountered on quartz grain surfaces prior to and following analysis depend largely on the mineralization (dissolved solute content) of water involved in the weathering process. The higher the water mineralization, the greater the intensity of mechanical weathering. Two predominant outcomes in the course of these micro‐scale frost weathering tests have been identified: a physical (mechanical) aspect manifested by the occurrence of conchoidal fractures and breakage block microtextures dominating up to 300 FT cycles, and a chemical aspect resulting in the occurrence of precipitation crusts and obliteration of grain microrelief. Moreover, three additional stages of microtexture development may be distinguished with the evolution of frost‐induced microrelief on the surface of quartz grains: (i) initial cracks of large‐sized conchoidal fractures, (ii) increasing frost cycles yielding additional small‐sized conchoidal fractures, and (iii) advanced breakage blocks. Frost‐induced exposure of fresh, unweathered grain surfaces leads to refreshing of the grain surface.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi‐stage evolution of frost‐induced microtextures on the surface of quartz grains—An experimental study\",\"authors\":\"M. Górska, B. Woronko\",\"doi\":\"10.1002/ppp.2164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coarse sand‐sized (0.5–1.0 mm) grains of vein quartz were subjected to frost‐induced stress under controlled laboratory conditions. A total of 1,000 freeze–thaw (FT) cycles, simulated under different (low, high) water mineralization conditions in the temperature range from −5°C up to +10°C, were used to test effects on collected samples. Scanning electron microscopic (SEM) microtextural analysis of grain surfaces was performed at 0 (start) and after 50, 100, 300, 700, and 1,000 FT cycles. The results indicate that variable frost‐induced microtextural imprints encountered on quartz grain surfaces prior to and following analysis depend largely on the mineralization (dissolved solute content) of water involved in the weathering process. The higher the water mineralization, the greater the intensity of mechanical weathering. Two predominant outcomes in the course of these micro‐scale frost weathering tests have been identified: a physical (mechanical) aspect manifested by the occurrence of conchoidal fractures and breakage block microtextures dominating up to 300 FT cycles, and a chemical aspect resulting in the occurrence of precipitation crusts and obliteration of grain microrelief. Moreover, three additional stages of microtexture development may be distinguished with the evolution of frost‐induced microrelief on the surface of quartz grains: (i) initial cracks of large‐sized conchoidal fractures, (ii) increasing frost cycles yielding additional small‐sized conchoidal fractures, and (iii) advanced breakage blocks. Frost‐induced exposure of fresh, unweathered grain surfaces leads to refreshing of the grain surface.\",\"PeriodicalId\":54629,\"journal\":{\"name\":\"Permafrost and Periglacial Processes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Permafrost and Periglacial Processes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/ppp.2164\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Permafrost and Periglacial Processes","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/ppp.2164","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Multi‐stage evolution of frost‐induced microtextures on the surface of quartz grains—An experimental study
Coarse sand‐sized (0.5–1.0 mm) grains of vein quartz were subjected to frost‐induced stress under controlled laboratory conditions. A total of 1,000 freeze–thaw (FT) cycles, simulated under different (low, high) water mineralization conditions in the temperature range from −5°C up to +10°C, were used to test effects on collected samples. Scanning electron microscopic (SEM) microtextural analysis of grain surfaces was performed at 0 (start) and after 50, 100, 300, 700, and 1,000 FT cycles. The results indicate that variable frost‐induced microtextural imprints encountered on quartz grain surfaces prior to and following analysis depend largely on the mineralization (dissolved solute content) of water involved in the weathering process. The higher the water mineralization, the greater the intensity of mechanical weathering. Two predominant outcomes in the course of these micro‐scale frost weathering tests have been identified: a physical (mechanical) aspect manifested by the occurrence of conchoidal fractures and breakage block microtextures dominating up to 300 FT cycles, and a chemical aspect resulting in the occurrence of precipitation crusts and obliteration of grain microrelief. Moreover, three additional stages of microtexture development may be distinguished with the evolution of frost‐induced microrelief on the surface of quartz grains: (i) initial cracks of large‐sized conchoidal fractures, (ii) increasing frost cycles yielding additional small‐sized conchoidal fractures, and (iii) advanced breakage blocks. Frost‐induced exposure of fresh, unweathered grain surfaces leads to refreshing of the grain surface.
期刊介绍:
Permafrost and Periglacial Processes is an international journal dedicated to the rapid publication of scientific and technical papers concerned with earth surface cryogenic processes, landforms and sediments present in a variety of (Sub) Arctic, Antarctic and High Mountain environments. It provides an efficient vehicle of communication amongst those with an interest in the cold, non-glacial geosciences. The focus is on (1) original research based on geomorphological, hydrological, sedimentological, geotechnical and engineering aspects of these areas and (2) original research carried out upon relict features where the objective has been to reconstruct the nature of the processes and/or palaeoenvironments which gave rise to these features, as opposed to purely stratigraphical considerations. The journal also publishes short communications, reviews, discussions and book reviews. The high scientific standard, interdisciplinary character and worldwide representation of PPP are maintained by regional editorial support and a rigorous refereeing system.