F. Kibbou, Keltoum El Bouhmadi, Hélène Marrou, T. Sinclair, M. Ghanem
{"title":"干旱和温度限制对蚕豆(Vicia faba L.)发育和生长的影响","authors":"F. Kibbou, Keltoum El Bouhmadi, Hélène Marrou, T. Sinclair, M. Ghanem","doi":"10.1080/15427528.2021.1906811","DOIUrl":null,"url":null,"abstract":"ABSTRACT Faba bean (Vicia faba L.) is an important traditional pulse crop in many parts of Asia and the Mediterranean region. However, water deficit and temperature, two of the key variables associated with climate variability, can have major negative influences on the development and growth of faba bean. A series of experiments were conducted to study the potential impact of temperature and water deficit on several physiological processes among faba bean genotypes. Development of node number was determined to be dependent on temperature and was found to be essentially constant among genotypes with a value of 56°C accumulated temperature required for appearance of each node. Plant leaf area, which is important in crop carbon accumulation, was estimated by developing allometric relationships between plant leaf area and number of nodes. The coefficients of these relationships varied among genotypes. Water deficit was found to be critical in impacting plant transpiration and nitrogen fixation rates. The threshold for the decrease in transpiration rate with soil drying was found to range from a fraction of transpirable soil water (FTSW) from 0.22 to 0.60 among 12 genotypes, indicating a genetic resource for improving drought resilience. Results in comparing symbiotic nitrogen fixation on drying soil among genotypes also indicated genetic variation, with one genotype (WW4403/H) being especially drought tolerant. The results of these experiments identified important genotypic differences in sensitivity of specific physiological processes to temperature and water deficit, which can be exploited to improve faba bean resilience to these environmental variables.","PeriodicalId":15468,"journal":{"name":"Journal of Crop Improvement","volume":"36 1","pages":"57 - 72"},"PeriodicalIF":1.0000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427528.2021.1906811","citationCount":"4","resultStr":"{\"title\":\"Impact of drought and temperature constraints on development and growth of faba bean (Vicia faba L.)\",\"authors\":\"F. Kibbou, Keltoum El Bouhmadi, Hélène Marrou, T. Sinclair, M. Ghanem\",\"doi\":\"10.1080/15427528.2021.1906811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Faba bean (Vicia faba L.) is an important traditional pulse crop in many parts of Asia and the Mediterranean region. However, water deficit and temperature, two of the key variables associated with climate variability, can have major negative influences on the development and growth of faba bean. A series of experiments were conducted to study the potential impact of temperature and water deficit on several physiological processes among faba bean genotypes. Development of node number was determined to be dependent on temperature and was found to be essentially constant among genotypes with a value of 56°C accumulated temperature required for appearance of each node. Plant leaf area, which is important in crop carbon accumulation, was estimated by developing allometric relationships between plant leaf area and number of nodes. The coefficients of these relationships varied among genotypes. Water deficit was found to be critical in impacting plant transpiration and nitrogen fixation rates. The threshold for the decrease in transpiration rate with soil drying was found to range from a fraction of transpirable soil water (FTSW) from 0.22 to 0.60 among 12 genotypes, indicating a genetic resource for improving drought resilience. Results in comparing symbiotic nitrogen fixation on drying soil among genotypes also indicated genetic variation, with one genotype (WW4403/H) being especially drought tolerant. The results of these experiments identified important genotypic differences in sensitivity of specific physiological processes to temperature and water deficit, which can be exploited to improve faba bean resilience to these environmental variables.\",\"PeriodicalId\":15468,\"journal\":{\"name\":\"Journal of Crop Improvement\",\"volume\":\"36 1\",\"pages\":\"57 - 72\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427528.2021.1906811\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Crop Improvement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427528.2021.1906811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crop Improvement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427528.2021.1906811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
Impact of drought and temperature constraints on development and growth of faba bean (Vicia faba L.)
ABSTRACT Faba bean (Vicia faba L.) is an important traditional pulse crop in many parts of Asia and the Mediterranean region. However, water deficit and temperature, two of the key variables associated with climate variability, can have major negative influences on the development and growth of faba bean. A series of experiments were conducted to study the potential impact of temperature and water deficit on several physiological processes among faba bean genotypes. Development of node number was determined to be dependent on temperature and was found to be essentially constant among genotypes with a value of 56°C accumulated temperature required for appearance of each node. Plant leaf area, which is important in crop carbon accumulation, was estimated by developing allometric relationships between plant leaf area and number of nodes. The coefficients of these relationships varied among genotypes. Water deficit was found to be critical in impacting plant transpiration and nitrogen fixation rates. The threshold for the decrease in transpiration rate with soil drying was found to range from a fraction of transpirable soil water (FTSW) from 0.22 to 0.60 among 12 genotypes, indicating a genetic resource for improving drought resilience. Results in comparing symbiotic nitrogen fixation on drying soil among genotypes also indicated genetic variation, with one genotype (WW4403/H) being especially drought tolerant. The results of these experiments identified important genotypic differences in sensitivity of specific physiological processes to temperature and water deficit, which can be exploited to improve faba bean resilience to these environmental variables.
期刊介绍:
Journal of Crop Science and Biotechnology (JCSB) is a peer-reviewed international journal published four times a year. JCSB publishes novel and advanced original research articles on topics related to the production science of field crops and resource plants, including cropping systems, sustainable agriculture, environmental change, post-harvest management, biodiversity, crop improvement, and recent advances in physiology and molecular biology. Also covered are related subjects in a wide range of sciences such as the ecological and physiological aspects of crop production and genetic, breeding, and biotechnological approaches for crop improvement.