Daniela Vianna, Edleno Silva de Moura, Altigran Soares da Silva
{"title":"一种无监督组织法律文件集合的主题发现方法","authors":"Daniela Vianna, Edleno Silva de Moura, Altigran Soares da Silva","doi":"10.1007/s10506-023-09371-w","DOIUrl":null,"url":null,"abstract":"<div><p>Technology has substantially transformed the way legal services operate in many different countries. With a large and complex collection of digitized legal documents, the judiciary system worldwide presents a promising scenario for the development of intelligent tools. In this work, we tackle the challenging task of organizing and summarizing the constantly growing collection of legal documents, uncovering hidden topics, or themes that later can support tasks such as legal case retrieval and legal judgment prediction. Our approach to this problem relies on topic discovery techniques combined with a variety of preprocessing techniques and learning-based vector representations of words, such as Doc2Vec and BERT-like models. The proposed method was validated using four different datasets composed of short and long legal documents in Brazilian Portuguese, from legal decisions to chapters in legal books. Analysis conducted by a team of legal specialists revealed the effectiveness of the proposed approach to uncover unique and relevant topics from large collections of legal documents, serving many purposes, such as giving support to legal case retrieval tools and also providing the team of legal specialists with a tool that can accelerate their work of labeling/tagging legal documents.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"32 4","pages":"1045 - 1074"},"PeriodicalIF":3.1000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A topic discovery approach for unsupervised organization of legal document collections\",\"authors\":\"Daniela Vianna, Edleno Silva de Moura, Altigran Soares da Silva\",\"doi\":\"10.1007/s10506-023-09371-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Technology has substantially transformed the way legal services operate in many different countries. With a large and complex collection of digitized legal documents, the judiciary system worldwide presents a promising scenario for the development of intelligent tools. In this work, we tackle the challenging task of organizing and summarizing the constantly growing collection of legal documents, uncovering hidden topics, or themes that later can support tasks such as legal case retrieval and legal judgment prediction. Our approach to this problem relies on topic discovery techniques combined with a variety of preprocessing techniques and learning-based vector representations of words, such as Doc2Vec and BERT-like models. The proposed method was validated using four different datasets composed of short and long legal documents in Brazilian Portuguese, from legal decisions to chapters in legal books. Analysis conducted by a team of legal specialists revealed the effectiveness of the proposed approach to uncover unique and relevant topics from large collections of legal documents, serving many purposes, such as giving support to legal case retrieval tools and also providing the team of legal specialists with a tool that can accelerate their work of labeling/tagging legal documents.</p></div>\",\"PeriodicalId\":51336,\"journal\":{\"name\":\"Artificial Intelligence and Law\",\"volume\":\"32 4\",\"pages\":\"1045 - 1074\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Law\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10506-023-09371-w\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Law","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10506-023-09371-w","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A topic discovery approach for unsupervised organization of legal document collections
Technology has substantially transformed the way legal services operate in many different countries. With a large and complex collection of digitized legal documents, the judiciary system worldwide presents a promising scenario for the development of intelligent tools. In this work, we tackle the challenging task of organizing and summarizing the constantly growing collection of legal documents, uncovering hidden topics, or themes that later can support tasks such as legal case retrieval and legal judgment prediction. Our approach to this problem relies on topic discovery techniques combined with a variety of preprocessing techniques and learning-based vector representations of words, such as Doc2Vec and BERT-like models. The proposed method was validated using four different datasets composed of short and long legal documents in Brazilian Portuguese, from legal decisions to chapters in legal books. Analysis conducted by a team of legal specialists revealed the effectiveness of the proposed approach to uncover unique and relevant topics from large collections of legal documents, serving many purposes, such as giving support to legal case retrieval tools and also providing the team of legal specialists with a tool that can accelerate their work of labeling/tagging legal documents.
期刊介绍:
Artificial Intelligence and Law is an international forum for the dissemination of original interdisciplinary research in the following areas: Theoretical or empirical studies in artificial intelligence (AI), cognitive psychology, jurisprudence, linguistics, or philosophy which address the development of formal or computational models of legal knowledge, reasoning, and decision making. In-depth studies of innovative artificial intelligence systems that are being used in the legal domain. Studies which address the legal, ethical and social implications of the field of Artificial Intelligence and Law.
Topics of interest include, but are not limited to, the following: Computational models of legal reasoning and decision making; judgmental reasoning, adversarial reasoning, case-based reasoning, deontic reasoning, and normative reasoning. Formal representation of legal knowledge: deontic notions, normative
modalities, rights, factors, values, rules. Jurisprudential theories of legal reasoning. Specialized logics for law. Psychological and linguistic studies concerning legal reasoning. Legal expert systems; statutory systems, legal practice systems, predictive systems, and normative systems. AI and law support for legislative drafting, judicial decision-making, and
public administration. Intelligent processing of legal documents; conceptual retrieval of cases and statutes, automatic text understanding, intelligent document assembly systems, hypertext, and semantic markup of legal documents. Intelligent processing of legal information on the World Wide Web, legal ontologies, automated intelligent legal agents, electronic legal institutions, computational models of legal texts. Ramifications for AI and Law in e-Commerce, automatic contracting and negotiation, digital rights management, and automated dispute resolution. Ramifications for AI and Law in e-governance, e-government, e-Democracy, and knowledge-based systems supporting public services, public dialogue and mediation. Intelligent computer-assisted instructional systems in law or ethics. Evaluation and auditing techniques for legal AI systems. Systemic problems in the construction and delivery of legal AI systems. Impact of AI on the law and legal institutions. Ethical issues concerning legal AI systems. In addition to original research contributions, the Journal will include a Book Review section, a series of Technology Reports describing existing and emerging products, applications and technologies, and a Research Notes section of occasional essays posing interesting and timely research challenges for the field of Artificial Intelligence and Law. Financial support for the Journal of Artificial Intelligence and Law is provided by the University of Pittsburgh School of Law.