基于数值模拟的大型射电望远镜场地防风林控制风流研究

IF 1.6 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Advances in Astronomy Pub Date : 2023-05-17 DOI:10.1155/2023/5257749
Feilong He, Qian Xu, Na Wang
{"title":"基于数值模拟的大型射电望远镜场地防风林控制风流研究","authors":"Feilong He, Qian Xu, Na Wang","doi":"10.1155/2023/5257749","DOIUrl":null,"url":null,"abstract":"The higher the pointing accuracy of the radio telescope, the more obvious the influence of wind disturbance on antenna performance. Taking the site of the 110 m aperture QiTai radio Telescope (QTT) as an example, the terrain and air flow characteristics of the site are studied. It is found that the wind direction with high incoming wind frequency and relatively high speed is mostly located in the mountain gap on the periphery of the antenna. If the wind resistance facilities are precisely arranged in the upstream tuyere, the wind speed in the antenna area can be effectively reduced. This study proposes a method to control the wind flow at a telescope site based on the precise arrangement of the windbreak fence. The windbreak fence simulation model is constructed using the theory of porous jump. The mean error of the simulation results is less than 14% compared to the wind tunnel measured data, indicating that the constructed windbreak fence model has high reliability. The computational domain model of the working conditions for the site is constructed. The extreme condition of the windbreak fence arrangement is considered, and the simulation results show that the wind speed in the antenna area can be reduced by more than 30% through the control of the windbreak fence. It verifies the feasibility of the method of controlling the wind flow by the windbreak fence for the site which provides a reference for the subsequent research on the precise arrangement of the windbreak fence.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Wind Flow Control by Windbreak Fence for a Large Radio Telescope Site Based on Numerical Simulations\",\"authors\":\"Feilong He, Qian Xu, Na Wang\",\"doi\":\"10.1155/2023/5257749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The higher the pointing accuracy of the radio telescope, the more obvious the influence of wind disturbance on antenna performance. Taking the site of the 110 m aperture QiTai radio Telescope (QTT) as an example, the terrain and air flow characteristics of the site are studied. It is found that the wind direction with high incoming wind frequency and relatively high speed is mostly located in the mountain gap on the periphery of the antenna. If the wind resistance facilities are precisely arranged in the upstream tuyere, the wind speed in the antenna area can be effectively reduced. This study proposes a method to control the wind flow at a telescope site based on the precise arrangement of the windbreak fence. The windbreak fence simulation model is constructed using the theory of porous jump. The mean error of the simulation results is less than 14% compared to the wind tunnel measured data, indicating that the constructed windbreak fence model has high reliability. The computational domain model of the working conditions for the site is constructed. The extreme condition of the windbreak fence arrangement is considered, and the simulation results show that the wind speed in the antenna area can be reduced by more than 30% through the control of the windbreak fence. It verifies the feasibility of the method of controlling the wind flow by the windbreak fence for the site which provides a reference for the subsequent research on the precise arrangement of the windbreak fence.\",\"PeriodicalId\":48962,\"journal\":{\"name\":\"Advances in Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5257749\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/5257749","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

射电望远镜指向精度越高,风扰动对天线性能的影响越明显。以110 m口径七台射电望远镜(QTT)场地为例,对场地地形和气流特征进行了研究。研究发现,入风频率高、风速相对较高的风向多位于天线外围的山隙处。如果在上游风口精确布置风阻设施,可以有效降低天线区域的风速。本研究提出了一种基于防风林精确布置的望远镜场地风向控制方法。利用多孔跃变理论,建立了防风栅栏的仿真模型。与风洞实测数据相比,模拟结果的平均误差小于14%,表明所构建的风挡模型具有较高的可靠性。建立了现场工况的计算域模型。考虑了防风栅布置的极端条件,仿真结果表明,通过对防风栅的控制,可以使天线区域内的风速降低30%以上。验证了场地防风栅栏控制风量方法的可行性,为后续研究防风栅栏的精确布置提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Wind Flow Control by Windbreak Fence for a Large Radio Telescope Site Based on Numerical Simulations
The higher the pointing accuracy of the radio telescope, the more obvious the influence of wind disturbance on antenna performance. Taking the site of the 110 m aperture QiTai radio Telescope (QTT) as an example, the terrain and air flow characteristics of the site are studied. It is found that the wind direction with high incoming wind frequency and relatively high speed is mostly located in the mountain gap on the periphery of the antenna. If the wind resistance facilities are precisely arranged in the upstream tuyere, the wind speed in the antenna area can be effectively reduced. This study proposes a method to control the wind flow at a telescope site based on the precise arrangement of the windbreak fence. The windbreak fence simulation model is constructed using the theory of porous jump. The mean error of the simulation results is less than 14% compared to the wind tunnel measured data, indicating that the constructed windbreak fence model has high reliability. The computational domain model of the working conditions for the site is constructed. The extreme condition of the windbreak fence arrangement is considered, and the simulation results show that the wind speed in the antenna area can be reduced by more than 30% through the control of the windbreak fence. It verifies the feasibility of the method of controlling the wind flow by the windbreak fence for the site which provides a reference for the subsequent research on the precise arrangement of the windbreak fence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Astronomy
Advances in Astronomy ASTRONOMY & ASTROPHYSICS-
CiteScore
2.70
自引率
7.10%
发文量
10
审稿时长
22 weeks
期刊介绍: Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.
期刊最新文献
A Study of the Early Cosmic Dynamics in a Multifield Model of Inflation and Curvature Perturbations Forecasting Ionospheric TEC Changes Associated with the December 2019 and June 2020 Solar Eclipses: A Comparative Analysis of OKSM, FFNN, and DeepAR Models Measuring Track-Related Pointing Errors on the Nanshan Radio Telescope with an Optical Pointing Telescope Tracking and Disturbance Suppression of the Radio Telescope Servo System Based on the Equivalent-Input-Disturbance Approach Dark Energy from Cosmological Energy Conservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1