受移动荷载作用的土钢桥壳的位移:用应变计测量和数值模拟测定

IF 0.7 Q4 MECHANICS Studia Geotechnica et Mechanica Pub Date : 2022-01-20 DOI:10.2478/sgem-2021-0028
C. Machelski, Maciej Sobótka, Szczepan Grosel
{"title":"受移动荷载作用的土钢桥壳的位移:用应变计测量和数值模拟测定","authors":"C. Machelski, Maciej Sobótka, Szczepan Grosel","doi":"10.2478/sgem-2021-0028","DOIUrl":null,"url":null,"abstract":"Abstract This paper analyses displacements of a shell in a soil-steel bridge subjected to quasi-static moving loads. The considerations relate to a large span structure located in Ostróda, Poland. In particular, shell displacements during a loading cycle consisting of consecutive passages of a pair of trucks over the bridge are investigated. The results of a full-scale test, that is, the readings from a system of strain gauges arranged along the shell circumferential section, are the basis for determination of shell displacements. The proposed algorithm makes it possible to calculate any component of the displacement using just a simple model of the shell in the form of a linear elastic curvilinear beam. The approach uses real measurements, and thus, it yields results of displacements reflecting the actual mechanical behaviour of the entire composite structure including not only the shell, but also the backfill, the pavement, etc. The calculated state of displacement sets the basis for calibration of the numerical model. Finite element (FE) analyses include staged construction, that is, backfilling the shell by placing successive soil layers, as well as the loading test with the vehicles moving over the bridge. It is demonstrated that the ballasting of the shell during backfilling contributes to the improvement of the simulated behaviour of the object at the stage of operation, that is, when subjected to moving truck load. Thus, the calibration of the FE model is successfully carried out using the results of strain gauge measurements.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Displacements of shell in soil-steel bridge subjected to moving load: determination using strain gauge measurements and numerical simulation\",\"authors\":\"C. Machelski, Maciej Sobótka, Szczepan Grosel\",\"doi\":\"10.2478/sgem-2021-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper analyses displacements of a shell in a soil-steel bridge subjected to quasi-static moving loads. The considerations relate to a large span structure located in Ostróda, Poland. In particular, shell displacements during a loading cycle consisting of consecutive passages of a pair of trucks over the bridge are investigated. The results of a full-scale test, that is, the readings from a system of strain gauges arranged along the shell circumferential section, are the basis for determination of shell displacements. The proposed algorithm makes it possible to calculate any component of the displacement using just a simple model of the shell in the form of a linear elastic curvilinear beam. The approach uses real measurements, and thus, it yields results of displacements reflecting the actual mechanical behaviour of the entire composite structure including not only the shell, but also the backfill, the pavement, etc. The calculated state of displacement sets the basis for calibration of the numerical model. Finite element (FE) analyses include staged construction, that is, backfilling the shell by placing successive soil layers, as well as the loading test with the vehicles moving over the bridge. It is demonstrated that the ballasting of the shell during backfilling contributes to the improvement of the simulated behaviour of the object at the stage of operation, that is, when subjected to moving truck load. Thus, the calibration of the FE model is successfully carried out using the results of strain gauge measurements.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2021-0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2021-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文分析了土拱桥在准静态移动荷载作用下的壳体位移。考虑因素涉及位于波兰奥斯特罗达的一座大跨度结构。特别是,研究了由一对卡车在桥上连续通过组成的装载循环期间的壳体位移。全尺寸试验的结果,即沿壳体周向截面布置的应变仪系统的读数,是确定壳体位移的基础。所提出的算法使得仅使用线性弹性曲线梁形式的壳体的简单模型就可以计算位移的任何分量。该方法使用实际测量,因此,它产生的位移结果反映了整个复合材料结构的实际力学行为,不仅包括壳体,还包括回填、路面等。计算出的位移状态为数值模型的校准奠定了基础。有限元(FE)分析包括分阶段施工,即通过放置连续土层回填外壳,以及车辆在桥梁上行驶时的荷载测试。研究表明,在回填过程中,壳体的压载有助于改善物体在运行阶段的模拟行为,即在承受移动卡车荷载时的模拟行为。因此,使用应变仪测量结果成功地进行了有限元模型的校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Displacements of shell in soil-steel bridge subjected to moving load: determination using strain gauge measurements and numerical simulation
Abstract This paper analyses displacements of a shell in a soil-steel bridge subjected to quasi-static moving loads. The considerations relate to a large span structure located in Ostróda, Poland. In particular, shell displacements during a loading cycle consisting of consecutive passages of a pair of trucks over the bridge are investigated. The results of a full-scale test, that is, the readings from a system of strain gauges arranged along the shell circumferential section, are the basis for determination of shell displacements. The proposed algorithm makes it possible to calculate any component of the displacement using just a simple model of the shell in the form of a linear elastic curvilinear beam. The approach uses real measurements, and thus, it yields results of displacements reflecting the actual mechanical behaviour of the entire composite structure including not only the shell, but also the backfill, the pavement, etc. The calculated state of displacement sets the basis for calibration of the numerical model. Finite element (FE) analyses include staged construction, that is, backfilling the shell by placing successive soil layers, as well as the loading test with the vehicles moving over the bridge. It is demonstrated that the ballasting of the shell during backfilling contributes to the improvement of the simulated behaviour of the object at the stage of operation, that is, when subjected to moving truck load. Thus, the calibration of the FE model is successfully carried out using the results of strain gauge measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
20
审稿时长
16 weeks
期刊介绍: An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories
期刊最新文献
Modeling of rigid inclusion ground improvements in large-scale geotechnical simulations Seismicity and Tectonics of the Republic of Kosovo Small-strain stiffness of selected anthropogenic aggregates from bender element tests The Role of Spatial Distribution of Geotechnical Soil Parameters in Site Investigation Geometrization of a 3D numerical model of an underground facility based on the results of terrestrial laser scanning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1