M. Isaenkova, M. Petrov, I. V. Kozlov, A. V. Bogomolova
{"title":"氢化E110opt和E635管的结构特征","authors":"M. Isaenkova, M. Petrov, I. V. Kozlov, A. V. Bogomolova","doi":"10.17580/nfm.2023.01.07","DOIUrl":null,"url":null,"abstract":"The paper investigates the behavior of the hydride phase in hydrogenated tubes made of Russian zirconium E635 and E110opt alloys. The orientation and fraction of mesoscale hydrides in the alloy matrix have been described by analyzing optical metallographic images using the developed software. Metallographic images were used to assess the predominant orientation of hydrides in the axial section of the tube, as well as the surface density of the hydride phase with an increase in the concentration of hydrogen in tubes made of different alloys. It has been shown that increasing the hydrogen concentration to 600–700 wppm increases the number of radially oriented hydrides, which is associated with the development of compressive radial stress during the formation of tangentially oriented hydrides at the initial stage. Increasing the hydrogen concentration in E110opt alloy cladding tubes to 600–700 wppm leads to a change in the orientation of the (cid:14) -zirconium basal axes, which results in an increase in the integral textural f R f -parameter and a decrease in the f T ff - and f L f -parameters. This change is due to the development of radial compressive stress and is only possible due to the activation of twinning in the grains, the basal axes of which are deflected from the compressive stress at an angle of up to 90 degrees.","PeriodicalId":19653,"journal":{"name":"Nonferrous Metals","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structural features of hydrogenated E110opt and E635 tubes\",\"authors\":\"M. Isaenkova, M. Petrov, I. V. Kozlov, A. V. Bogomolova\",\"doi\":\"10.17580/nfm.2023.01.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper investigates the behavior of the hydride phase in hydrogenated tubes made of Russian zirconium E635 and E110opt alloys. The orientation and fraction of mesoscale hydrides in the alloy matrix have been described by analyzing optical metallographic images using the developed software. Metallographic images were used to assess the predominant orientation of hydrides in the axial section of the tube, as well as the surface density of the hydride phase with an increase in the concentration of hydrogen in tubes made of different alloys. It has been shown that increasing the hydrogen concentration to 600–700 wppm increases the number of radially oriented hydrides, which is associated with the development of compressive radial stress during the formation of tangentially oriented hydrides at the initial stage. Increasing the hydrogen concentration in E110opt alloy cladding tubes to 600–700 wppm leads to a change in the orientation of the (cid:14) -zirconium basal axes, which results in an increase in the integral textural f R f -parameter and a decrease in the f T ff - and f L f -parameters. This change is due to the development of radial compressive stress and is only possible due to the activation of twinning in the grains, the basal axes of which are deflected from the compressive stress at an angle of up to 90 degrees.\",\"PeriodicalId\":19653,\"journal\":{\"name\":\"Nonferrous Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonferrous Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17580/nfm.2023.01.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonferrous Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17580/nfm.2023.01.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Structural features of hydrogenated E110opt and E635 tubes
The paper investigates the behavior of the hydride phase in hydrogenated tubes made of Russian zirconium E635 and E110opt alloys. The orientation and fraction of mesoscale hydrides in the alloy matrix have been described by analyzing optical metallographic images using the developed software. Metallographic images were used to assess the predominant orientation of hydrides in the axial section of the tube, as well as the surface density of the hydride phase with an increase in the concentration of hydrogen in tubes made of different alloys. It has been shown that increasing the hydrogen concentration to 600–700 wppm increases the number of radially oriented hydrides, which is associated with the development of compressive radial stress during the formation of tangentially oriented hydrides at the initial stage. Increasing the hydrogen concentration in E110opt alloy cladding tubes to 600–700 wppm leads to a change in the orientation of the (cid:14) -zirconium basal axes, which results in an increase in the integral textural f R f -parameter and a decrease in the f T ff - and f L f -parameters. This change is due to the development of radial compressive stress and is only possible due to the activation of twinning in the grains, the basal axes of which are deflected from the compressive stress at an angle of up to 90 degrees.
期刊介绍:
Its thematic plan covers all directions of scientific and technical development in non-ferrous metallurgy. The main journal sections include scientific-technical papers on heavy and light non-ferrous metals, noble metals and alloys, rare and rare earth metals, carbon materials, composites and multi-functional coatings, radioactive elements, nanostructured metals and materials, metal forming, automation etc. Theoretical and practical problems of ore mining and mineral processing, production and processing of non-ferrous metals, complex usage of ores, economics and production management, automation of metallurgical processes are widely observed in this journal. "Non-ferrous Metals" journal publishes the papers of well-known scientists and leading metallurgists, elucidates important scientific-technical problems of development of concentrating and metallurgical enterprises, scientific-research institutes and universities in the field of non-ferrous metallurgy, presents new scientific directions and technical innovations in this area. The readers can find in this journal both the articles with applied investigations and with results of fundamental researches that make the base for new technical developments. Publishing according to the approach APC (Article processing charge).