{"title":"放电加工Inconel-718航空合金的形貌和织构分析","authors":"K. Biswas, Shirsendu Das, Swarup Paul, B. Doloi","doi":"10.1080/10910344.2021.1971715","DOIUrl":null,"url":null,"abstract":"Abstract The Inconel 718 has captured global attention for its huge applications in the aerospace and defense field. However, a limited approach is noticed to investigate this material's responses and morphological features after electrical discharge machining operation. This study wants to offer a more detailed investigating approach, including the analysis of morphological features, recast layer, microhardness, elemental composition, and several textural defects and basic responses. Scanning electron microscopy is used to investigate several textural features, defects, cracks, and recast layers. The findings claim 538 nm–2.168 µm and 14–41 µm variations in crack width and recast thickness, respectively, which increase with pulse current and pulse on-time. However, the low discharge energy can provide better micro-hardness than higher discharge conditions due to having sufficient time for flushing and heat dissipations. The recast surface and the interfaces are, respectively, 7.58%–13.16% and 22.75%–32.74% harder with low discharge condition than the intermediate and higher discharge condition. Moreover, the Energy Dispersive X-ray analysis reported the emigration of 17.81% of carbon and 0.33% of copper from the dielectric and tool during the machining.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":"25 1","pages":"776 - 801"},"PeriodicalIF":2.7000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A morphological and textural analysis of Inconel-718 aerospace alloy processed through electrical discharging machining\",\"authors\":\"K. Biswas, Shirsendu Das, Swarup Paul, B. Doloi\",\"doi\":\"10.1080/10910344.2021.1971715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Inconel 718 has captured global attention for its huge applications in the aerospace and defense field. However, a limited approach is noticed to investigate this material's responses and morphological features after electrical discharge machining operation. This study wants to offer a more detailed investigating approach, including the analysis of morphological features, recast layer, microhardness, elemental composition, and several textural defects and basic responses. Scanning electron microscopy is used to investigate several textural features, defects, cracks, and recast layers. The findings claim 538 nm–2.168 µm and 14–41 µm variations in crack width and recast thickness, respectively, which increase with pulse current and pulse on-time. However, the low discharge energy can provide better micro-hardness than higher discharge conditions due to having sufficient time for flushing and heat dissipations. The recast surface and the interfaces are, respectively, 7.58%–13.16% and 22.75%–32.74% harder with low discharge condition than the intermediate and higher discharge condition. Moreover, the Energy Dispersive X-ray analysis reported the emigration of 17.81% of carbon and 0.33% of copper from the dielectric and tool during the machining.\",\"PeriodicalId\":51109,\"journal\":{\"name\":\"Machining Science and Technology\",\"volume\":\"25 1\",\"pages\":\"776 - 801\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10910344.2021.1971715\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2021.1971715","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
A morphological and textural analysis of Inconel-718 aerospace alloy processed through electrical discharging machining
Abstract The Inconel 718 has captured global attention for its huge applications in the aerospace and defense field. However, a limited approach is noticed to investigate this material's responses and morphological features after electrical discharge machining operation. This study wants to offer a more detailed investigating approach, including the analysis of morphological features, recast layer, microhardness, elemental composition, and several textural defects and basic responses. Scanning electron microscopy is used to investigate several textural features, defects, cracks, and recast layers. The findings claim 538 nm–2.168 µm and 14–41 µm variations in crack width and recast thickness, respectively, which increase with pulse current and pulse on-time. However, the low discharge energy can provide better micro-hardness than higher discharge conditions due to having sufficient time for flushing and heat dissipations. The recast surface and the interfaces are, respectively, 7.58%–13.16% and 22.75%–32.74% harder with low discharge condition than the intermediate and higher discharge condition. Moreover, the Energy Dispersive X-ray analysis reported the emigration of 17.81% of carbon and 0.33% of copper from the dielectric and tool during the machining.
期刊介绍:
Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials.
Topics covered include:
-machining performance of all materials, including lightweight materials-
coated and special cutting tools: design and machining performance evaluation-
predictive models for machining performance and optimization, including machining dynamics-
measurement and analysis of machined surfaces-
sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes
precision and micro/nano machining-
design and implementation of in-process sensors for monitoring and control of machining performance-
surface integrity in machining processes, including detection and characterization of machining damage-
new and advanced abrasive machining processes: design and performance analysis-
cutting fluids and special coolants/lubricants-
nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining