放电加工Inconel-718航空合金的形貌和织构分析

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING Machining Science and Technology Pub Date : 2021-09-03 DOI:10.1080/10910344.2021.1971715
K. Biswas, Shirsendu Das, Swarup Paul, B. Doloi
{"title":"放电加工Inconel-718航空合金的形貌和织构分析","authors":"K. Biswas, Shirsendu Das, Swarup Paul, B. Doloi","doi":"10.1080/10910344.2021.1971715","DOIUrl":null,"url":null,"abstract":"Abstract The Inconel 718 has captured global attention for its huge applications in the aerospace and defense field. However, a limited approach is noticed to investigate this material's responses and morphological features after electrical discharge machining operation. This study wants to offer a more detailed investigating approach, including the analysis of morphological features, recast layer, microhardness, elemental composition, and several textural defects and basic responses. Scanning electron microscopy is used to investigate several textural features, defects, cracks, and recast layers. The findings claim 538 nm–2.168 µm and 14–41 µm variations in crack width and recast thickness, respectively, which increase with pulse current and pulse on-time. However, the low discharge energy can provide better micro-hardness than higher discharge conditions due to having sufficient time for flushing and heat dissipations. The recast surface and the interfaces are, respectively, 7.58%–13.16% and 22.75%–32.74% harder with low discharge condition than the intermediate and higher discharge condition. Moreover, the Energy Dispersive X-ray analysis reported the emigration of 17.81% of carbon and 0.33% of copper from the dielectric and tool during the machining.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":"25 1","pages":"776 - 801"},"PeriodicalIF":2.7000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A morphological and textural analysis of Inconel-718 aerospace alloy processed through electrical discharging machining\",\"authors\":\"K. Biswas, Shirsendu Das, Swarup Paul, B. Doloi\",\"doi\":\"10.1080/10910344.2021.1971715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Inconel 718 has captured global attention for its huge applications in the aerospace and defense field. However, a limited approach is noticed to investigate this material's responses and morphological features after electrical discharge machining operation. This study wants to offer a more detailed investigating approach, including the analysis of morphological features, recast layer, microhardness, elemental composition, and several textural defects and basic responses. Scanning electron microscopy is used to investigate several textural features, defects, cracks, and recast layers. The findings claim 538 nm–2.168 µm and 14–41 µm variations in crack width and recast thickness, respectively, which increase with pulse current and pulse on-time. However, the low discharge energy can provide better micro-hardness than higher discharge conditions due to having sufficient time for flushing and heat dissipations. The recast surface and the interfaces are, respectively, 7.58%–13.16% and 22.75%–32.74% harder with low discharge condition than the intermediate and higher discharge condition. Moreover, the Energy Dispersive X-ray analysis reported the emigration of 17.81% of carbon and 0.33% of copper from the dielectric and tool during the machining.\",\"PeriodicalId\":51109,\"journal\":{\"name\":\"Machining Science and Technology\",\"volume\":\"25 1\",\"pages\":\"776 - 801\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10910344.2021.1971715\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2021.1971715","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

摘要

因科乃尔718因其在航空航天和国防领域的广泛应用而受到全球关注。然而,研究这种材料在放电加工后的响应和形态特征的方法有限。本研究希望提供一种更详细的研究方法,包括形貌特征、重铸层、显微硬度、元素组成以及几种织构缺陷和基本响应的分析。扫描电子显微镜用于研究几种纹理特征、缺陷、裂纹和重铸层。结果表明,裂纹宽度和重铸厚度随脉冲电流和脉冲导通时间的增加而变化,分别为538 nm ~ 2.168 μ m和14 ~ 41 μ m。然而,由于低放电能量有足够的时间进行冲洗和散热,因此可以提供比高放电条件更好的显微硬度。低放电条件下,重铸表面和界面硬度分别比中等和高放电条件下高7.58% ~ 13.16%和22.75% ~ 32.74%。此外,能量色散x射线分析表明,在加工过程中,介质和刀具中有17.81%的碳和0.33%的铜析出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A morphological and textural analysis of Inconel-718 aerospace alloy processed through electrical discharging machining
Abstract The Inconel 718 has captured global attention for its huge applications in the aerospace and defense field. However, a limited approach is noticed to investigate this material's responses and morphological features after electrical discharge machining operation. This study wants to offer a more detailed investigating approach, including the analysis of morphological features, recast layer, microhardness, elemental composition, and several textural defects and basic responses. Scanning electron microscopy is used to investigate several textural features, defects, cracks, and recast layers. The findings claim 538 nm–2.168 µm and 14–41 µm variations in crack width and recast thickness, respectively, which increase with pulse current and pulse on-time. However, the low discharge energy can provide better micro-hardness than higher discharge conditions due to having sufficient time for flushing and heat dissipations. The recast surface and the interfaces are, respectively, 7.58%–13.16% and 22.75%–32.74% harder with low discharge condition than the intermediate and higher discharge condition. Moreover, the Energy Dispersive X-ray analysis reported the emigration of 17.81% of carbon and 0.33% of copper from the dielectric and tool during the machining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
期刊最新文献
Investigation on the machining characteristics of AZ91 magnesium alloy using uncoated and CVD-diamond coated WC-Co inserts Combination of minimum quantity lubrication (MQL) with solid lubricant (SL): challenges, predictions and implications for sustainability Novel insights into conventional machining of metal additive manufactured components: a comprehensive review Numerical modeling of heat flux in ultrasonic-assisted grinding of difficult-to-cut materials with a pressurized lubrication system The performance of grooved turning tools under distinct cooling environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1