基于自回归候选区域偏移技术的短期电力负荷预测

J. Raharjo, Suyatno Budiharjo
{"title":"基于自回归候选区域偏移技术的短期电力负荷预测","authors":"J. Raharjo, Suyatno Budiharjo","doi":"10.15866/irea.v9i5.20668","DOIUrl":null,"url":null,"abstract":"Electric power load forecasting is needed to be used as a consideration in providing electricity in the future. A combination of the Auto Regressive model and the Candidates Area Shifting Technique is proposed to predict the demand for electrical loads. The results of the proposed method are compared with the ones of the hybrid Particle Swarm Optimization-Support Vector Regression and FCM Clustering Technique methods. The results show that the proposed method provides better performance than the other ones. The three methods provide mean absolute percentage error and maximum absolute percentage error respectively as follows: Particle Swarm Optimization-Support Vector Regression Method 2.859% and 9,516%, FCM Clustering 1.032% and 2.798%, and Auto Regressive-Candidates Area Shifting Technique 0.298%  and 0.872%, respectively.","PeriodicalId":53420,"journal":{"name":"International Journal on Engineering Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-Term Electric Load Forecasting Using Auto Regressive-Candidates Area Shifting Technique\",\"authors\":\"J. Raharjo, Suyatno Budiharjo\",\"doi\":\"10.15866/irea.v9i5.20668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric power load forecasting is needed to be used as a consideration in providing electricity in the future. A combination of the Auto Regressive model and the Candidates Area Shifting Technique is proposed to predict the demand for electrical loads. The results of the proposed method are compared with the ones of the hybrid Particle Swarm Optimization-Support Vector Regression and FCM Clustering Technique methods. The results show that the proposed method provides better performance than the other ones. The three methods provide mean absolute percentage error and maximum absolute percentage error respectively as follows: Particle Swarm Optimization-Support Vector Regression Method 2.859% and 9,516%, FCM Clustering 1.032% and 2.798%, and Auto Regressive-Candidates Area Shifting Technique 0.298%  and 0.872%, respectively.\",\"PeriodicalId\":53420,\"journal\":{\"name\":\"International Journal on Engineering Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Engineering Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/irea.v9i5.20668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Engineering Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/irea.v9i5.20668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

电力负荷预测需要作为未来供电的一个考虑因素。提出了将自回归模型与候选区域偏移技术相结合来预测电力负荷需求的方法。将该方法的结果与粒子群优化支持向量回归和FCM聚类技术的混合方法进行了比较。结果表明,该方法比其他方法具有更好的性能。这三种方法的平均绝对百分比误差和最大绝对百分比误差分别为:粒子群优化支持向量回归方法2.859%和9516%,FCM聚类方法1.032%和2.798%,自回归候选区域偏移技术0.298%和0.872%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short-Term Electric Load Forecasting Using Auto Regressive-Candidates Area Shifting Technique
Electric power load forecasting is needed to be used as a consideration in providing electricity in the future. A combination of the Auto Regressive model and the Candidates Area Shifting Technique is proposed to predict the demand for electrical loads. The results of the proposed method are compared with the ones of the hybrid Particle Swarm Optimization-Support Vector Regression and FCM Clustering Technique methods. The results show that the proposed method provides better performance than the other ones. The three methods provide mean absolute percentage error and maximum absolute percentage error respectively as follows: Particle Swarm Optimization-Support Vector Regression Method 2.859% and 9,516%, FCM Clustering 1.032% and 2.798%, and Auto Regressive-Candidates Area Shifting Technique 0.298%  and 0.872%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
24
期刊最新文献
Development of Planned Behavior Theory in Increasing Awareness of the Marine Environment in Students Optimization of a Wafer Conveyor Spool for Plastic Injection Molding Production Realization and Supervision of an Intelligent Energy Distribution System with a New Combination Topology of Fuzzy and PID Controllers Evaluation of Spark Ignition Engine Performance and Operation Stability with Low Octane Gasoline and Methyl Tert-Butyl Ether Additive Prediction of Tumour Site in Larynx Contrast CT Images by Radiomic Feature Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1