M. Arunmozhi, J. Persis, V. Sreedharan, A. Chakraborty, Tarik Zouadi, Hanane Khamlichi
{"title":"在医疗机构中管理COVID-19大流行的资源分配:多元视角","authors":"M. Arunmozhi, J. Persis, V. Sreedharan, A. Chakraborty, Tarik Zouadi, Hanane Khamlichi","doi":"10.1108/ijqrm-09-2020-0315","DOIUrl":null,"url":null,"abstract":"PurposeAs COVID-19 outbreak has created a global crisis, treating patients with minimum resources and traditional methods has become a hectic task. In this technological era, the rapid growth of coronavirus has affected the countries in lightspeed manner. Therefore, the present study proposes a model to analyse the resource allocation for the COVID-19 pandemic from a pluralistic perspective.Design/methodology/approachThe present study has combined data analytics with the K-mean clustering and probability queueing theory (PQT) and analysed the evolution of COVID-19 all over the world from the data obtained from public repositories. By using K-mean clustering, partitioning of patients’ records along with their status of hospitalization can be mapped and clustered. After K-mean analysis, cluster functions are trained and modelled along with eigen vectors and eigen functions.FindingsAfter successful iterative training, the model is programmed using R functions and given as input to Bayesian filter for predictive model analysis. Through the proposed model, disposal rate; PPE (personal protective equipment) utilization and recycle rate for different countries were calculated.Research limitations/implicationsUsing probabilistic queueing theory and clustering, the study was able to predict the resource allocation for patients. Also, the study has tried to model the failure quotient ratio upon unsuccessful delivery rate in crisis condition.Practical implicationsThe study has gathered epidemiological and clinical data from various government websites and research laboratories. Using these data, the study has identified the COVID-19 impact in various countries. Further, effective decision-making for resource allocation in pluralistic setting has being evaluated for the practitioner's reference.Originality/valueFurther, the proposed model is a two-stage approach for vulnerability mapping in a pandemic situation in a healthcare setting for resource allocation and utilization.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Managing the resource allocation for the COVID-19 pandemic in healthcare institutions: a pluralistic perspective\",\"authors\":\"M. Arunmozhi, J. Persis, V. Sreedharan, A. Chakraborty, Tarik Zouadi, Hanane Khamlichi\",\"doi\":\"10.1108/ijqrm-09-2020-0315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeAs COVID-19 outbreak has created a global crisis, treating patients with minimum resources and traditional methods has become a hectic task. In this technological era, the rapid growth of coronavirus has affected the countries in lightspeed manner. Therefore, the present study proposes a model to analyse the resource allocation for the COVID-19 pandemic from a pluralistic perspective.Design/methodology/approachThe present study has combined data analytics with the K-mean clustering and probability queueing theory (PQT) and analysed the evolution of COVID-19 all over the world from the data obtained from public repositories. By using K-mean clustering, partitioning of patients’ records along with their status of hospitalization can be mapped and clustered. After K-mean analysis, cluster functions are trained and modelled along with eigen vectors and eigen functions.FindingsAfter successful iterative training, the model is programmed using R functions and given as input to Bayesian filter for predictive model analysis. Through the proposed model, disposal rate; PPE (personal protective equipment) utilization and recycle rate for different countries were calculated.Research limitations/implicationsUsing probabilistic queueing theory and clustering, the study was able to predict the resource allocation for patients. Also, the study has tried to model the failure quotient ratio upon unsuccessful delivery rate in crisis condition.Practical implicationsThe study has gathered epidemiological and clinical data from various government websites and research laboratories. Using these data, the study has identified the COVID-19 impact in various countries. Further, effective decision-making for resource allocation in pluralistic setting has being evaluated for the practitioner's reference.Originality/valueFurther, the proposed model is a two-stage approach for vulnerability mapping in a pandemic situation in a healthcare setting for resource allocation and utilization.\",\"PeriodicalId\":14193,\"journal\":{\"name\":\"International Journal of Quality & Reliability Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality & Reliability Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijqrm-09-2020-0315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-09-2020-0315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
Managing the resource allocation for the COVID-19 pandemic in healthcare institutions: a pluralistic perspective
PurposeAs COVID-19 outbreak has created a global crisis, treating patients with minimum resources and traditional methods has become a hectic task. In this technological era, the rapid growth of coronavirus has affected the countries in lightspeed manner. Therefore, the present study proposes a model to analyse the resource allocation for the COVID-19 pandemic from a pluralistic perspective.Design/methodology/approachThe present study has combined data analytics with the K-mean clustering and probability queueing theory (PQT) and analysed the evolution of COVID-19 all over the world from the data obtained from public repositories. By using K-mean clustering, partitioning of patients’ records along with their status of hospitalization can be mapped and clustered. After K-mean analysis, cluster functions are trained and modelled along with eigen vectors and eigen functions.FindingsAfter successful iterative training, the model is programmed using R functions and given as input to Bayesian filter for predictive model analysis. Through the proposed model, disposal rate; PPE (personal protective equipment) utilization and recycle rate for different countries were calculated.Research limitations/implicationsUsing probabilistic queueing theory and clustering, the study was able to predict the resource allocation for patients. Also, the study has tried to model the failure quotient ratio upon unsuccessful delivery rate in crisis condition.Practical implicationsThe study has gathered epidemiological and clinical data from various government websites and research laboratories. Using these data, the study has identified the COVID-19 impact in various countries. Further, effective decision-making for resource allocation in pluralistic setting has being evaluated for the practitioner's reference.Originality/valueFurther, the proposed model is a two-stage approach for vulnerability mapping in a pandemic situation in a healthcare setting for resource allocation and utilization.
期刊介绍:
In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining