高性能纤维增强混凝土中部分生物纳米二氧化硅包体的制备与表征

IF 2 4区 工程技术 Q3 ENGINEERING, CHEMICAL Advances in Polymer Technology Pub Date : 2023-08-10 DOI:10.1155/2023/4379941
D. Vivek, C. Aravind, S. Gokulkumar, M. Aravindh, Yalew Asres
{"title":"高性能纤维增强混凝土中部分生物纳米二氧化硅包体的制备与表征","authors":"D. Vivek, C. Aravind, S. Gokulkumar, M. Aravindh, Yalew Asres","doi":"10.1155/2023/4379941","DOIUrl":null,"url":null,"abstract":"Ultra-high-performance fibre-reinforced concrete (UHPFRC) is a specialized type of concrete (to create a very dense matrix) that is used for both new construction and renovation projects in order to improve the lifespan of structures. Researchers analyse and evaluate only the microstructure, porosity, and fresh and hardened concrete properties of UHPFRC but limited their exploration on the reduction of the mechanical properties of UHPFRC due to the presence of metallic particles and micro-fractures that occur during the generation of hydrogen. Hence, the present study aims to eliminate the existing problem by hybridization approach (mixing of bio-nano-silica (nS) and polypropylene) with different percentages to further improve the strength properties of UHPFRC. The result showed that the compressive strength is increased by 15.5% compared to traditional concrete due to the filling ratio of nS in the pores of the concrete; in addition, the fibre’s surface and roughness also contributed to the strength enhancement.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and Characterization of Partial Bio-nano-silica Inclusion in Fibre-Reinforced Concrete for High-performance Applications\",\"authors\":\"D. Vivek, C. Aravind, S. Gokulkumar, M. Aravindh, Yalew Asres\",\"doi\":\"10.1155/2023/4379941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-high-performance fibre-reinforced concrete (UHPFRC) is a specialized type of concrete (to create a very dense matrix) that is used for both new construction and renovation projects in order to improve the lifespan of structures. Researchers analyse and evaluate only the microstructure, porosity, and fresh and hardened concrete properties of UHPFRC but limited their exploration on the reduction of the mechanical properties of UHPFRC due to the presence of metallic particles and micro-fractures that occur during the generation of hydrogen. Hence, the present study aims to eliminate the existing problem by hybridization approach (mixing of bio-nano-silica (nS) and polypropylene) with different percentages to further improve the strength properties of UHPFRC. The result showed that the compressive strength is increased by 15.5% compared to traditional concrete due to the filling ratio of nS in the pores of the concrete; in addition, the fibre’s surface and roughness also contributed to the strength enhancement.\",\"PeriodicalId\":7372,\"journal\":{\"name\":\"Advances in Polymer Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Polymer Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4379941\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/4379941","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

超高性能纤维混凝土(UHPFRC)是一种特殊类型的混凝土(以形成非常致密的基质),用于新建和翻新项目,以提高结构的使用寿命。研究人员仅分析和评估UHPFRC的微观结构、孔隙率以及新拌和硬化混凝土性能,但由于氢生成过程中存在金属颗粒和微裂纹,他们对降低UHPFRC力学性能的探索受到限制。因此,本研究旨在通过不同百分比的杂交方法(将生物纳米二氧化硅(nS)和聚丙烯混合)来消除现有问题,以进一步提高UHPFRC的强度性能。结果表明,由于nS在混凝土孔隙中的填充比例,混凝土的抗压强度比传统混凝土提高了15.5%;此外,纤维的表面和粗糙度也有助于强度的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication and Characterization of Partial Bio-nano-silica Inclusion in Fibre-Reinforced Concrete for High-performance Applications
Ultra-high-performance fibre-reinforced concrete (UHPFRC) is a specialized type of concrete (to create a very dense matrix) that is used for both new construction and renovation projects in order to improve the lifespan of structures. Researchers analyse and evaluate only the microstructure, porosity, and fresh and hardened concrete properties of UHPFRC but limited their exploration on the reduction of the mechanical properties of UHPFRC due to the presence of metallic particles and micro-fractures that occur during the generation of hydrogen. Hence, the present study aims to eliminate the existing problem by hybridization approach (mixing of bio-nano-silica (nS) and polypropylene) with different percentages to further improve the strength properties of UHPFRC. The result showed that the compressive strength is increased by 15.5% compared to traditional concrete due to the filling ratio of nS in the pores of the concrete; in addition, the fibre’s surface and roughness also contributed to the strength enhancement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Polymer Technology
Advances in Polymer Technology 工程技术-高分子科学
CiteScore
5.50
自引率
0.00%
发文量
70
审稿时长
9 months
期刊介绍: Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.
期刊最新文献
Analysis and Optimization of Thermoplastic Polyurethane Infill Patterns for Additive Manufacturing in Pipeline Applications Antibacterial Effect of Copper Oxide Nanoparticles on Polyvinyl Chloride-Based Polymer Nanocomposite Synthesis of Hydrogel Based on Poly (Acrylic Acid–Co-Vinyl Acetate) Grafted on Modified Recycled Cellulose for Use in Fertilizer Slow-Release System Rescaffolding Carbon Nanotubes in Thermoset Polymers by Heat Treatments Design and Application of Flexible Sensors in Human–Machine Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1