对公元774年极端太阳粒子风暴飞行高度辐射风险的评估

IF 3.4 2区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Journal of Space Weather and Space Climate Pub Date : 2023-08-18 DOI:10.1051/swsc/2023020
A. Mishev, S. Panovska, I. Usoskin
{"title":"对公元774年极端太阳粒子风暴飞行高度辐射风险的评估","authors":"A. Mishev, S. Panovska, I. Usoskin","doi":"10.1051/swsc/2023020","DOIUrl":null,"url":null,"abstract":"Intense solar activity can lead to an acceleration of solar energetic particles and accordingly in crease in the complex radiation field at commercial aviation flight altitudes. We considered here the strongest ever observed event, namely that of 774 AD registered on the basis of cosmogenic isotope measurements, and computed the ambient dose at aviation altitude(s). Since the spectrum of solar protons during 774 AD event can not be directly obtained, as a first step, we derived the spectra of the solar protons during the GLE #5, the strongest event observed by direct measurements, which was subsequently scaled to the size of the 774 AD event and eventually used as input to the corresponding radiation model. The GLE #5 was considered as a conservative approach because it revealed the hardest-ever derived energy spectrum. The global map of the ambient dose was computed under realistic data-based reconstruction of the geomagnetic field during the 774 AD epoch, based on paleomagnetic measurements. A realistic approach on the basis of a GLE #45 was also considered, that is by scaling an event with softer spectra and lower particle fluxes compared to the GLE#5. The altitude dependence of the event integrated dose at altitudes from 30 kft to 50 kft was also computed for the both scenarios. The presented here study of the radiation\neffects during the extreme event of 774 AD give the necessary basis to be used as a reference to assess the worst-case scenario for a specific threat, that is radiation dose at flight altitudes.","PeriodicalId":17034,"journal":{"name":"Journal of Space Weather and Space Climate","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the radiation risk at flight altitudes for an extreme solar particle storm of 774 AD\",\"authors\":\"A. Mishev, S. Panovska, I. Usoskin\",\"doi\":\"10.1051/swsc/2023020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intense solar activity can lead to an acceleration of solar energetic particles and accordingly in crease in the complex radiation field at commercial aviation flight altitudes. We considered here the strongest ever observed event, namely that of 774 AD registered on the basis of cosmogenic isotope measurements, and computed the ambient dose at aviation altitude(s). Since the spectrum of solar protons during 774 AD event can not be directly obtained, as a first step, we derived the spectra of the solar protons during the GLE #5, the strongest event observed by direct measurements, which was subsequently scaled to the size of the 774 AD event and eventually used as input to the corresponding radiation model. The GLE #5 was considered as a conservative approach because it revealed the hardest-ever derived energy spectrum. The global map of the ambient dose was computed under realistic data-based reconstruction of the geomagnetic field during the 774 AD epoch, based on paleomagnetic measurements. A realistic approach on the basis of a GLE #45 was also considered, that is by scaling an event with softer spectra and lower particle fluxes compared to the GLE#5. The altitude dependence of the event integrated dose at altitudes from 30 kft to 50 kft was also computed for the both scenarios. The presented here study of the radiation\\neffects during the extreme event of 774 AD give the necessary basis to be used as a reference to assess the worst-case scenario for a specific threat, that is radiation dose at flight altitudes.\",\"PeriodicalId\":17034,\"journal\":{\"name\":\"Journal of Space Weather and Space Climate\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Space Weather and Space Climate\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/swsc/2023020\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Weather and Space Climate","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/swsc/2023020","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

强烈的太阳活动会导致太阳高能粒子加速,从而增加商业航空飞行高度的复杂辐射场。我们在这里考虑了有史以来观测到的最强事件,即根据宇宙成因同位素测量记录的公元774年的事件,并计算了航空高度的环境剂量。由于无法直接获得774 AD事件期间的太阳质子光谱,因此,作为第一步,我们推导了GLE#5期间太阳质子的光谱,这是通过直接测量观察到的最强事件,随后将其缩放为774 AD的大小,并最终用作相应辐射模型的输入。GLE#5被认为是一种保守的方法,因为它揭示了有史以来最难推导的能谱。环境剂量的全球地图是在基于古地磁测量的基础上,根据真实数据重建公元774年时期的地磁场而计算的。还考虑了一种基于GLE#45的现实方法,即通过与GLE#5相比,用更柔和的光谱和更低的粒子通量来缩放事件。对于这两种情况,还计算了30 kft至50 kft高度的事件积分剂量的高度依赖性。本文对公元774年极端事件期间的辐射影响进行的研究为评估特定威胁的最坏情况(即飞行高度的辐射剂量)提供了必要的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of the radiation risk at flight altitudes for an extreme solar particle storm of 774 AD
Intense solar activity can lead to an acceleration of solar energetic particles and accordingly in crease in the complex radiation field at commercial aviation flight altitudes. We considered here the strongest ever observed event, namely that of 774 AD registered on the basis of cosmogenic isotope measurements, and computed the ambient dose at aviation altitude(s). Since the spectrum of solar protons during 774 AD event can not be directly obtained, as a first step, we derived the spectra of the solar protons during the GLE #5, the strongest event observed by direct measurements, which was subsequently scaled to the size of the 774 AD event and eventually used as input to the corresponding radiation model. The GLE #5 was considered as a conservative approach because it revealed the hardest-ever derived energy spectrum. The global map of the ambient dose was computed under realistic data-based reconstruction of the geomagnetic field during the 774 AD epoch, based on paleomagnetic measurements. A realistic approach on the basis of a GLE #45 was also considered, that is by scaling an event with softer spectra and lower particle fluxes compared to the GLE#5. The altitude dependence of the event integrated dose at altitudes from 30 kft to 50 kft was also computed for the both scenarios. The presented here study of the radiation effects during the extreme event of 774 AD give the necessary basis to be used as a reference to assess the worst-case scenario for a specific threat, that is radiation dose at flight altitudes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Space Weather and Space Climate
Journal of Space Weather and Space Climate ASTRONOMY & ASTROPHYSICS-GEOCHEMISTRY & GEOPHYSICS
CiteScore
6.90
自引率
6.10%
发文量
40
审稿时长
8 weeks
期刊介绍: The Journal of Space Weather and Space Climate (SWSC) is an international multi-disciplinary and interdisciplinary peer-reviewed open access journal which publishes papers on all aspects of space weather and space climate from a broad range of scientific and technical fields including solar physics, space plasma physics, aeronomy, planetology, radio science, geophysics, biology, medicine, astronautics, aeronautics, electrical engineering, meteorology, climatology, mathematics, economy, informatics.
期刊最新文献
Multi-Instrument Observations and Tracking of a Coronal Mass Ejection Front From Low to Middle Corona A Bayesian approach to the drag-based modelling of ICMEs Reconstruction of electron precipitation spectra at the top of the upper atmosphere using 427.8 nm auroral images Karl von Lindener's Sunspot Observations during 1800 – 1827: Another Long-Term Dataset for the Dalton Minimum On the detection of a solar radio burst event occurred on 28 August 2022 and its effect on GNSS signals as observed by ionospheric scintillation monitors distributed over the American sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1