纳米流体颗粒存在下MHD流过多孔材料垂直锥体时的非牛顿卡森流体行为

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanofluids Pub Date : 2023-06-01 DOI:10.1166/jon.2023.2035
M. Sathyanarayana, T. R. Goud
{"title":"纳米流体颗粒存在下MHD流过多孔材料垂直锥体时的非牛顿卡森流体行为","authors":"M. Sathyanarayana, T. R. Goud","doi":"10.1166/jon.2023.2035","DOIUrl":null,"url":null,"abstract":"The flow of nanofluids around a vertical cone with porous media and Casson fluid characteristics is being looked at in this study. Thermophoresis, Brownian motion, and chemical reactions are also looked at. There are some ways to change the connected partial differential equations into\n a set of third-order ordinary differential equation with variable coefficients. This is called a similarity transformation. The Runge-Kutta method is used to solve third-order boundary layer equations. Physical processes, such as Epidermis slippage, velocity, temperature, but instead fluid\n density, mass transfer, heat transference coefficients, besides rate of heat handover coefficients, may be studied in this research. These processes may be looked at in this study. There are graphs that show a lot of different physical processes. Current numerical results are compared to results\n that have been published in the past to make sure computer programmes work. The resultant velocity profiles are decreasing utilising an increasing trendy captivating field as a result of Lorentz potency. Species concentration of Casson-When the oxidizing agent factor is increased, the microspheres\n decrease. Temperature profile areas a result of the rise in Thermo Scattering movements but instead heat conduction and Brownian motion parameters. Also, roles about increasing values of Biot number and this same criterion of radiant heat would be to surge the room’s temperature hybrid\n Nanofluid flow as well as rate of heat flows so at exterior. Concentration profiles remain rising with increasing the morals of Thermo migration limitation and contrary effect occurs as a consequence of Brownian motion parameter.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Newtonian Casson Fluid Behaviour in the Presence of Nanofluid Particles During MHD Flow Through a Vertical Cone Filled With Porous Material\",\"authors\":\"M. Sathyanarayana, T. R. Goud\",\"doi\":\"10.1166/jon.2023.2035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flow of nanofluids around a vertical cone with porous media and Casson fluid characteristics is being looked at in this study. Thermophoresis, Brownian motion, and chemical reactions are also looked at. There are some ways to change the connected partial differential equations into\\n a set of third-order ordinary differential equation with variable coefficients. This is called a similarity transformation. The Runge-Kutta method is used to solve third-order boundary layer equations. Physical processes, such as Epidermis slippage, velocity, temperature, but instead fluid\\n density, mass transfer, heat transference coefficients, besides rate of heat handover coefficients, may be studied in this research. These processes may be looked at in this study. There are graphs that show a lot of different physical processes. Current numerical results are compared to results\\n that have been published in the past to make sure computer programmes work. The resultant velocity profiles are decreasing utilising an increasing trendy captivating field as a result of Lorentz potency. Species concentration of Casson-When the oxidizing agent factor is increased, the microspheres\\n decrease. Temperature profile areas a result of the rise in Thermo Scattering movements but instead heat conduction and Brownian motion parameters. Also, roles about increasing values of Biot number and this same criterion of radiant heat would be to surge the room’s temperature hybrid\\n Nanofluid flow as well as rate of heat flows so at exterior. Concentration profiles remain rising with increasing the morals of Thermo migration limitation and contrary effect occurs as a consequence of Brownian motion parameter.\",\"PeriodicalId\":47161,\"journal\":{\"name\":\"Journal of Nanofluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jon.2023.2035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.2035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究着眼于纳米流体在具有多孔介质的垂直锥体周围的流动和Casson流体特性。还研究了热泳、布朗运动和化学反应。有一些方法可以将连接的偏微分方程转化为一组三阶变系数常微分方程。这被称为相似性变换。采用龙格-库塔方法求解三阶边界层方程。物理过程,如表皮滑移、速度、温度,但除了热传递系数外,还可以研究流体密度、传质、传热系数。这些过程可以在本研究中加以考察。有一些图表显示了许多不同的物理过程。将当前的数值结果与过去发表的结果进行比较,以确保计算机程序正常工作。由于洛伦兹势的结果,利用日益流行的吸引场,得到的速度剖面正在减小。Casson的物种浓度当氧化剂因子增加时,微球减少。温度分布区域是热散射运动上升的结果,而不是热传导和布朗运动参数的结果。此外,增加Biot数和辐射热的相同标准的作用是使室温混合纳米流体的流动以及外部的热流率激增。随着热迁移极限道德的提高,浓度分布仍在上升,而布朗运动参数则产生相反的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-Newtonian Casson Fluid Behaviour in the Presence of Nanofluid Particles During MHD Flow Through a Vertical Cone Filled With Porous Material
The flow of nanofluids around a vertical cone with porous media and Casson fluid characteristics is being looked at in this study. Thermophoresis, Brownian motion, and chemical reactions are also looked at. There are some ways to change the connected partial differential equations into a set of third-order ordinary differential equation with variable coefficients. This is called a similarity transformation. The Runge-Kutta method is used to solve third-order boundary layer equations. Physical processes, such as Epidermis slippage, velocity, temperature, but instead fluid density, mass transfer, heat transference coefficients, besides rate of heat handover coefficients, may be studied in this research. These processes may be looked at in this study. There are graphs that show a lot of different physical processes. Current numerical results are compared to results that have been published in the past to make sure computer programmes work. The resultant velocity profiles are decreasing utilising an increasing trendy captivating field as a result of Lorentz potency. Species concentration of Casson-When the oxidizing agent factor is increased, the microspheres decrease. Temperature profile areas a result of the rise in Thermo Scattering movements but instead heat conduction and Brownian motion parameters. Also, roles about increasing values of Biot number and this same criterion of radiant heat would be to surge the room’s temperature hybrid Nanofluid flow as well as rate of heat flows so at exterior. Concentration profiles remain rising with increasing the morals of Thermo migration limitation and contrary effect occurs as a consequence of Brownian motion parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
期刊最新文献
Heat Generation/Absorption in MHD Double Diffusive Mixed Convection of Different Nanofluids in a Trapezoidal Enclosure Numerical Investigation of Hybrid Nanofluid Natural Convection and Entropy Generation in a Corrugated Enclosure with an Inner Conducting Block Magnetohydrodynamic Free Convective Flow in a Vertical Microchannel with Heat Sink Unsteady Natural Convection of Dusty Hybrid Nanofluid Flow Between a Wavy and Circular Cylinder with Heat Generation Synergistic Heat Transfer in Enclosures: A Hybrid Nanofluids Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1