S. Prathima, Praveena N G, Sivachandar K, Srigitha S Nath, Sarala B
{"title":"通用水稻病害检测仪(GP2D2)","authors":"S. Prathima, Praveena N G, Sivachandar K, Srigitha S Nath, Sarala B","doi":"10.32985/ijeces.14.6.4","DOIUrl":null,"url":null,"abstract":"Rice is the primary food for almost half of the world’s population, especially for the people of Asian countries. There is a demand to improve the quality and increase the quantity of rice production to meet the food requirements of the increasing population. Bulk cultivation and quality production of crops need appropriate technology assistance over manual traditional methods. In this work, six popular Deep-CNN architectures, namely AlexNet, VGG-19, VGG-16, InceptionV3, MobileNet, and ResNet-50, are exploited to identify the diseases in paddy plants since they outperform most of the image classification applications. These CNN models are trained and tested with Plant Village dataset for classifying the paddy plant images into one of the four classes namely, Healthy, Brown Spot, Hispa, or Leaf Blast, based on the disease condition. The performance of the chosen architectures is compared with different hyper parameter settings. AlexNet outperformed other convolutional neural networks (CNNs) in this multiclass classification task, achieving an accuracy of 89.4% at the expense of a substantial number of network parameters, indicating the large model size of AlexNet. For developing mobile applications, the ResNet-50 architecture was adopted over other CNNs, since it has a comparatively smaller number of network parameters and a comparable accuracy of 86.1%. A fine-tuned ResNet-50 architecture supported mobile app, “Generic Paddy Plant Disease Detector (GP2D2)” has been developed for the identification of most commonly occurring diseases in paddy plants. This tool will be more helpful for the new generation of farmers in bulk cultivation and increasing the productivity of paddy. This work will give insight into the performance of CNN architectures in rice plant disease detection task and can be extended to other plants too.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generic Paddy Plant Disease Detector (GP2D2)\",\"authors\":\"S. Prathima, Praveena N G, Sivachandar K, Srigitha S Nath, Sarala B\",\"doi\":\"10.32985/ijeces.14.6.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rice is the primary food for almost half of the world’s population, especially for the people of Asian countries. There is a demand to improve the quality and increase the quantity of rice production to meet the food requirements of the increasing population. Bulk cultivation and quality production of crops need appropriate technology assistance over manual traditional methods. In this work, six popular Deep-CNN architectures, namely AlexNet, VGG-19, VGG-16, InceptionV3, MobileNet, and ResNet-50, are exploited to identify the diseases in paddy plants since they outperform most of the image classification applications. These CNN models are trained and tested with Plant Village dataset for classifying the paddy plant images into one of the four classes namely, Healthy, Brown Spot, Hispa, or Leaf Blast, based on the disease condition. The performance of the chosen architectures is compared with different hyper parameter settings. AlexNet outperformed other convolutional neural networks (CNNs) in this multiclass classification task, achieving an accuracy of 89.4% at the expense of a substantial number of network parameters, indicating the large model size of AlexNet. For developing mobile applications, the ResNet-50 architecture was adopted over other CNNs, since it has a comparatively smaller number of network parameters and a comparable accuracy of 86.1%. A fine-tuned ResNet-50 architecture supported mobile app, “Generic Paddy Plant Disease Detector (GP2D2)” has been developed for the identification of most commonly occurring diseases in paddy plants. This tool will be more helpful for the new generation of farmers in bulk cultivation and increasing the productivity of paddy. This work will give insight into the performance of CNN architectures in rice plant disease detection task and can be extended to other plants too.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.6.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.6.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Rice is the primary food for almost half of the world’s population, especially for the people of Asian countries. There is a demand to improve the quality and increase the quantity of rice production to meet the food requirements of the increasing population. Bulk cultivation and quality production of crops need appropriate technology assistance over manual traditional methods. In this work, six popular Deep-CNN architectures, namely AlexNet, VGG-19, VGG-16, InceptionV3, MobileNet, and ResNet-50, are exploited to identify the diseases in paddy plants since they outperform most of the image classification applications. These CNN models are trained and tested with Plant Village dataset for classifying the paddy plant images into one of the four classes namely, Healthy, Brown Spot, Hispa, or Leaf Blast, based on the disease condition. The performance of the chosen architectures is compared with different hyper parameter settings. AlexNet outperformed other convolutional neural networks (CNNs) in this multiclass classification task, achieving an accuracy of 89.4% at the expense of a substantial number of network parameters, indicating the large model size of AlexNet. For developing mobile applications, the ResNet-50 architecture was adopted over other CNNs, since it has a comparatively smaller number of network parameters and a comparable accuracy of 86.1%. A fine-tuned ResNet-50 architecture supported mobile app, “Generic Paddy Plant Disease Detector (GP2D2)” has been developed for the identification of most commonly occurring diseases in paddy plants. This tool will be more helpful for the new generation of farmers in bulk cultivation and increasing the productivity of paddy. This work will give insight into the performance of CNN architectures in rice plant disease detection task and can be extended to other plants too.
期刊介绍:
The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.