P. Delorme, F. Knop, Bernhard Krotz, H. Schlichtkrull
{"title":"实球面空间的Plancherel理论:Bernstein态射的构造","authors":"P. Delorme, F. Knop, Bernhard Krotz, H. Schlichtkrull","doi":"10.1090/jams/971","DOIUrl":null,"url":null,"abstract":"<p>This paper lays the foundation for Plancherel theory on real spherical spaces <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z equals upper G slash upper H\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>Z</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>H</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Z=G/H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, namely it provides the decomposition of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared left-parenthesis upper Z right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>Z</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">L^2(Z)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> into different series of representations via Bernstein morphisms. These series are parametrized by subsets of spherical roots which determine the fine geometry of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z\">\n <mml:semantics>\n <mml:mi>Z</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Z</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> at infinity. In particular, we obtain a generalization of the Maass-Selberg relations. As a corollary we obtain a partial geometric characterization of the discrete spectrum: <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared left-parenthesis upper Z right-parenthesis Subscript normal d normal i normal s normal c Baseline not-equals normal empty-set\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>Z</mml:mi>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">d</mml:mi>\n <mml:mi mathvariant=\"normal\">i</mml:mi>\n <mml:mi mathvariant=\"normal\">s</mml:mi>\n <mml:mi mathvariant=\"normal\">c</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:mo>≠<!-- ≠ --></mml:mo>\n <mml:mi mathvariant=\"normal\">∅<!-- ∅ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">L^2(Z)_{\\mathrm {disc}}\\neq \\emptyset</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German h Superscript up-tack\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">h</mml:mi>\n </mml:mrow>\n <mml:mo>⊥<!-- ⊥ --></mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {h}^\\perp</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> contains elliptic elements in its interior.</p>\n\n<p>In case <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z\">\n <mml:semantics>\n <mml:mi>Z</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Z</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a real reductive group or, more generally, a symmetric space our results retrieve the Plancherel formula of Harish-Chandra (for the group) as well as that of Delorme and van den Ban-Schlichtkrull (for symmetric spaces) up to the explicit determination of the discrete series for the inducing datum.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2018-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Plancherel theory for real spherical spaces: Construction of the Bernstein morphisms\",\"authors\":\"P. Delorme, F. Knop, Bernhard Krotz, H. Schlichtkrull\",\"doi\":\"10.1090/jams/971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper lays the foundation for Plancherel theory on real spherical spaces <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Z equals upper G slash upper H\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>Z</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mi>H</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Z=G/H</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, namely it provides the decomposition of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L squared left-parenthesis upper Z right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>L</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>Z</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L^2(Z)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> into different series of representations via Bernstein morphisms. These series are parametrized by subsets of spherical roots which determine the fine geometry of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Z\\\">\\n <mml:semantics>\\n <mml:mi>Z</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Z</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> at infinity. In particular, we obtain a generalization of the Maass-Selberg relations. As a corollary we obtain a partial geometric characterization of the discrete spectrum: <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L squared left-parenthesis upper Z right-parenthesis Subscript normal d normal i normal s normal c Baseline not-equals normal empty-set\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>L</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>Z</mml:mi>\\n <mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">d</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">i</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">s</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">c</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>≠<!-- ≠ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∅<!-- ∅ --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L^2(Z)_{\\\\mathrm {disc}}\\\\neq \\\\emptyset</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> if <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German h Superscript up-tack\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">h</mml:mi>\\n </mml:mrow>\\n <mml:mo>⊥<!-- ⊥ --></mml:mo>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {h}^\\\\perp</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> contains elliptic elements in its interior.</p>\\n\\n<p>In case <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Z\\\">\\n <mml:semantics>\\n <mml:mi>Z</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Z</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a real reductive group or, more generally, a symmetric space our results retrieve the Plancherel formula of Harish-Chandra (for the group) as well as that of Delorme and van den Ban-Schlichtkrull (for symmetric spaces) up to the explicit determination of the discrete series for the inducing datum.</p>\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2018-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/971\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/971","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15
摘要
本文为实球面空间Z=G/H Z=G/H的Plancherel理论奠定了基础,即通过Bernstein态射提供了l2 (Z) L^2(Z)分解成不同的表示序列。这些级数由球根的子集参数化,这些子集决定了zz在无穷远处的精细几何形状。特别地,我们得到了Maass-Selberg关系的推广。作为推论,我们得到离散谱的部分几何特征:l2 (Z) d sc≠∅L^2(Z)_{\ mathfrk {h}^\perp如果h⊥\ mathfrk {h}^\perp内部包含椭圆元素。如果zz是一个实约化群,或者更一般地说,是一个对称空间,我们的结果检索了Harish-Chandra的Plancherel公式(对于群)以及Delorme和van den Ban-Schlichtkrull的Plancherel公式(对于对称空间),直到诱导基准的离散级数的显式确定。
Plancherel theory for real spherical spaces: Construction of the Bernstein morphisms
This paper lays the foundation for Plancherel theory on real spherical spaces Z=G/HZ=G/H, namely it provides the decomposition of L2(Z)L^2(Z) into different series of representations via Bernstein morphisms. These series are parametrized by subsets of spherical roots which determine the fine geometry of ZZ at infinity. In particular, we obtain a generalization of the Maass-Selberg relations. As a corollary we obtain a partial geometric characterization of the discrete spectrum: L2(Z)disc≠∅L^2(Z)_{\mathrm {disc}}\neq \emptyset if h⊥\mathfrak {h}^\perp contains elliptic elements in its interior.
In case ZZ is a real reductive group or, more generally, a symmetric space our results retrieve the Plancherel formula of Harish-Chandra (for the group) as well as that of Delorme and van den Ban-Schlichtkrull (for symmetric spaces) up to the explicit determination of the discrete series for the inducing datum.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.