从分组数据估计收入统计:括号上的均值约束整合

IF 2.4 2区 社会学 Q1 SOCIOLOGY Sociological Methodology Pub Date : 2018-07-09 DOI:10.1177/0081175018782579
P. Jargowsky, Christopher A. Wheeler
{"title":"从分组数据估计收入统计:括号上的均值约束整合","authors":"P. Jargowsky, Christopher A. Wheeler","doi":"10.1177/0081175018782579","DOIUrl":null,"url":null,"abstract":"Researchers studying income inequality, economic segregation, and other subjects must often rely on grouped data—that is, data in which thousands or millions of observations have been reduced to counts of units by specified income brackets. The distribution of households within the brackets is unknown, and highest incomes are often included in an open-ended top bracket, such as “$200,000 and above.” Common approaches to this estimation problem include calculating midpoint estimators with an assumed Pareto distribution in the top bracket and fitting a flexible multiple-parameter distribution to the data. The authors describe a new method, mean-constrained integration over brackets (MCIB), that is far more accurate than those methods using only the bracket counts and the overall mean of the data. On the basis of an analysis of 297 metropolitan areas, MCIB produces estimates of the standard deviation, Gini coefficient, and Theil index that are correlated at 0.997, 0.998, and 0.991, respectively, with the parameters calculated from the underlying individual record data. Similar levels of accuracy are obtained for percentiles of the distribution and the shares of income by quintiles of the distribution. The technique can easily be extended to other distributional parameters and inequality statistics.","PeriodicalId":48140,"journal":{"name":"Sociological Methodology","volume":"48 1","pages":"337 - 374"},"PeriodicalIF":2.4000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0081175018782579","citationCount":"11","resultStr":"{\"title\":\"Estimating Income Statistics from Grouped Data: Mean-constrained Integration over Brackets\",\"authors\":\"P. Jargowsky, Christopher A. Wheeler\",\"doi\":\"10.1177/0081175018782579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers studying income inequality, economic segregation, and other subjects must often rely on grouped data—that is, data in which thousands or millions of observations have been reduced to counts of units by specified income brackets. The distribution of households within the brackets is unknown, and highest incomes are often included in an open-ended top bracket, such as “$200,000 and above.” Common approaches to this estimation problem include calculating midpoint estimators with an assumed Pareto distribution in the top bracket and fitting a flexible multiple-parameter distribution to the data. The authors describe a new method, mean-constrained integration over brackets (MCIB), that is far more accurate than those methods using only the bracket counts and the overall mean of the data. On the basis of an analysis of 297 metropolitan areas, MCIB produces estimates of the standard deviation, Gini coefficient, and Theil index that are correlated at 0.997, 0.998, and 0.991, respectively, with the parameters calculated from the underlying individual record data. Similar levels of accuracy are obtained for percentiles of the distribution and the shares of income by quintiles of the distribution. The technique can easily be extended to other distributional parameters and inequality statistics.\",\"PeriodicalId\":48140,\"journal\":{\"name\":\"Sociological Methodology\",\"volume\":\"48 1\",\"pages\":\"337 - 374\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2018-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0081175018782579\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociological Methodology\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/0081175018782579\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methodology","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/0081175018782579","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIOLOGY","Score":null,"Total":0}
引用次数: 11

摘要

研究收入不平等、经济隔离和其他主题的研究人员必须经常依赖分组数据——也就是说,在这些数据中,成千上万或数百万的观察结果被简化为特定收入等级的单位数。括号内的家庭分布是未知的,最高收入通常包括在一个开放的顶部括号中,如“200000美元及以上”。解决这一估计问题的常见方法包括在顶部括号中使用假定的Pareto分布计算中点估计量,并将灵活的多参数分布拟合到数据中。作者描述了一种新的方法,即括号上的平均约束积分(MCIB),它比那些只使用括号计数和数据总平均值的方法准确得多。基于对297个大都市地区的分析,MCIB得出了标准差、基尼系数和泰尔指数的估计值,这些估计值分别与根据基本个人记录数据计算的参数相关,分别为0.997、0.998和0.991。对于分布的百分位数和按分布的五分位数划分的收入份额,可以获得类似的准确度。该技术可以很容易地扩展到其他分布参数和不等式统计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating Income Statistics from Grouped Data: Mean-constrained Integration over Brackets
Researchers studying income inequality, economic segregation, and other subjects must often rely on grouped data—that is, data in which thousands or millions of observations have been reduced to counts of units by specified income brackets. The distribution of households within the brackets is unknown, and highest incomes are often included in an open-ended top bracket, such as “$200,000 and above.” Common approaches to this estimation problem include calculating midpoint estimators with an assumed Pareto distribution in the top bracket and fitting a flexible multiple-parameter distribution to the data. The authors describe a new method, mean-constrained integration over brackets (MCIB), that is far more accurate than those methods using only the bracket counts and the overall mean of the data. On the basis of an analysis of 297 metropolitan areas, MCIB produces estimates of the standard deviation, Gini coefficient, and Theil index that are correlated at 0.997, 0.998, and 0.991, respectively, with the parameters calculated from the underlying individual record data. Similar levels of accuracy are obtained for percentiles of the distribution and the shares of income by quintiles of the distribution. The technique can easily be extended to other distributional parameters and inequality statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
12
期刊介绍: Sociological Methodology is a compendium of new and sometimes controversial advances in social science methodology. Contributions come from diverse areas and have something useful -- and often surprising -- to say about a wide range of topics ranging from legal and ethical issues surrounding data collection to the methodology of theory construction. In short, Sociological Methodology holds something of value -- and an interesting mix of lively controversy, too -- for nearly everyone who participates in the enterprise of sociological research.
期刊最新文献
Contextual Embeddings in Sociological Research: Expanding the Analysis of Sentiment and Social Dynamics Using Relative Distribution Methods to Study Economic Polarization across Categories and Contexts Can Human Reading Validate a Topic Model? Question-Order Effect in the Study of Satisfaction with Democracy: Lessons from Three Split-Ballot Experiments Comparing the Robustness of Simple Network Scale-Up Method Estimators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1