Jean Lucas dos Passos Belo, P. Queiroz, Jefferson Silva
{"title":"基于地质统计学的RFEM在空间相关结构再现和条件模拟方面的增强","authors":"Jean Lucas dos Passos Belo, P. Queiroz, Jefferson Silva","doi":"10.28927/sr.2022.076121","DOIUrl":null,"url":null,"abstract":"Engineering always deals with uncertainties, and efforts are needed to quantify them. A probabilistic analysis considers the statistical information of the problem to this quantification. In the geotechnical area, uncertainties play a particular role in structure design because it deals with naturally formed materials. Evaluating spatial variability has become progressively important. However, studies on the correct reproduction of this variability and conditional simulations are limited. In this paper, a geostatistical-based enhancement of the Random Finite Element Method (RFEM) is presented. The main aim of this study is to incorporate an advanced multivariate geostatistical technique (i.e., Turning Bands Co-simulation, TBCOSIM) to reproduce the coregionalization model of soil properties correctly in order to investigate the effects regarding this reproduction. It is illustrated in a real case of soil slope. The results showed that, for the unconditional simulation, the presented approach reached a perfect agreement with the coregionalization model, while the conditional simulation inserted some disturbances to this agreement, but it still satisfactorily reproduced the model. The original RFEM failed to reproduce this structure, leading to lower variances than the presented approach, which would cause a non-conservative design. Furthermore, disregarding the local uncertainty (i.e., the nugget effect) may introduce bias to analysis and, depending on its magnitude, may also lead the conditional analysis to not show a worthwhile reduction in variances of results. Finally, this paper shows that correctly determining the coregionalization model and reproducing it on probabilistic analysis may meaningfully influence the results.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geostatistical-based enhancement of RFEM regarding reproduction of spatial correlation structures and conditional simulations\",\"authors\":\"Jean Lucas dos Passos Belo, P. Queiroz, Jefferson Silva\",\"doi\":\"10.28927/sr.2022.076121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering always deals with uncertainties, and efforts are needed to quantify them. A probabilistic analysis considers the statistical information of the problem to this quantification. In the geotechnical area, uncertainties play a particular role in structure design because it deals with naturally formed materials. Evaluating spatial variability has become progressively important. However, studies on the correct reproduction of this variability and conditional simulations are limited. In this paper, a geostatistical-based enhancement of the Random Finite Element Method (RFEM) is presented. The main aim of this study is to incorporate an advanced multivariate geostatistical technique (i.e., Turning Bands Co-simulation, TBCOSIM) to reproduce the coregionalization model of soil properties correctly in order to investigate the effects regarding this reproduction. It is illustrated in a real case of soil slope. The results showed that, for the unconditional simulation, the presented approach reached a perfect agreement with the coregionalization model, while the conditional simulation inserted some disturbances to this agreement, but it still satisfactorily reproduced the model. The original RFEM failed to reproduce this structure, leading to lower variances than the presented approach, which would cause a non-conservative design. Furthermore, disregarding the local uncertainty (i.e., the nugget effect) may introduce bias to analysis and, depending on its magnitude, may also lead the conditional analysis to not show a worthwhile reduction in variances of results. Finally, this paper shows that correctly determining the coregionalization model and reproducing it on probabilistic analysis may meaningfully influence the results.\",\"PeriodicalId\":43687,\"journal\":{\"name\":\"Soils and Rocks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Rocks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28927/sr.2022.076121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Rocks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2022.076121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Geostatistical-based enhancement of RFEM regarding reproduction of spatial correlation structures and conditional simulations
Engineering always deals with uncertainties, and efforts are needed to quantify them. A probabilistic analysis considers the statistical information of the problem to this quantification. In the geotechnical area, uncertainties play a particular role in structure design because it deals with naturally formed materials. Evaluating spatial variability has become progressively important. However, studies on the correct reproduction of this variability and conditional simulations are limited. In this paper, a geostatistical-based enhancement of the Random Finite Element Method (RFEM) is presented. The main aim of this study is to incorporate an advanced multivariate geostatistical technique (i.e., Turning Bands Co-simulation, TBCOSIM) to reproduce the coregionalization model of soil properties correctly in order to investigate the effects regarding this reproduction. It is illustrated in a real case of soil slope. The results showed that, for the unconditional simulation, the presented approach reached a perfect agreement with the coregionalization model, while the conditional simulation inserted some disturbances to this agreement, but it still satisfactorily reproduced the model. The original RFEM failed to reproduce this structure, leading to lower variances than the presented approach, which would cause a non-conservative design. Furthermore, disregarding the local uncertainty (i.e., the nugget effect) may introduce bias to analysis and, depending on its magnitude, may also lead the conditional analysis to not show a worthwhile reduction in variances of results. Finally, this paper shows that correctly determining the coregionalization model and reproducing it on probabilistic analysis may meaningfully influence the results.
期刊介绍:
Soils and Rocks publishes papers in English in the broad fields of Geotechnical Engineering, Engineering Geology and Environmental Engineering. The Journal is published in April, August and December. The journal, with the name "Solos e Rochas", was first published in 1978 by the Graduate School of Engineering-Federal University of Rio de Janeiro (COPPE-UFRJ).