基于地质统计学的RFEM在空间相关结构再现和条件模拟方面的增强

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-09-28 DOI:10.28927/sr.2022.076121
Jean Lucas dos Passos Belo, P. Queiroz, Jefferson Silva
{"title":"基于地质统计学的RFEM在空间相关结构再现和条件模拟方面的增强","authors":"Jean Lucas dos Passos Belo, P. Queiroz, Jefferson Silva","doi":"10.28927/sr.2022.076121","DOIUrl":null,"url":null,"abstract":"Engineering always deals with uncertainties, and efforts are needed to quantify them. A probabilistic analysis considers the statistical information of the problem to this quantification. In the geotechnical area, uncertainties play a particular role in structure design because it deals with naturally formed materials. Evaluating spatial variability has become progressively important. However, studies on the correct reproduction of this variability and conditional simulations are limited. In this paper, a geostatistical-based enhancement of the Random Finite Element Method (RFEM) is presented. The main aim of this study is to incorporate an advanced multivariate geostatistical technique (i.e., Turning Bands Co-simulation, TBCOSIM) to reproduce the coregionalization model of soil properties correctly in order to investigate the effects regarding this reproduction. It is illustrated in a real case of soil slope. The results showed that, for the unconditional simulation, the presented approach reached a perfect agreement with the coregionalization model, while the conditional simulation inserted some disturbances to this agreement, but it still satisfactorily reproduced the model. The original RFEM failed to reproduce this structure, leading to lower variances than the presented approach, which would cause a non-conservative design. Furthermore, disregarding the local uncertainty (i.e., the nugget effect) may introduce bias to analysis and, depending on its magnitude, may also lead the conditional analysis to not show a worthwhile reduction in variances of results. Finally, this paper shows that correctly determining the coregionalization model and reproducing it on probabilistic analysis may meaningfully influence the results.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geostatistical-based enhancement of RFEM regarding reproduction of spatial correlation structures and conditional simulations\",\"authors\":\"Jean Lucas dos Passos Belo, P. Queiroz, Jefferson Silva\",\"doi\":\"10.28927/sr.2022.076121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering always deals with uncertainties, and efforts are needed to quantify them. A probabilistic analysis considers the statistical information of the problem to this quantification. In the geotechnical area, uncertainties play a particular role in structure design because it deals with naturally formed materials. Evaluating spatial variability has become progressively important. However, studies on the correct reproduction of this variability and conditional simulations are limited. In this paper, a geostatistical-based enhancement of the Random Finite Element Method (RFEM) is presented. The main aim of this study is to incorporate an advanced multivariate geostatistical technique (i.e., Turning Bands Co-simulation, TBCOSIM) to reproduce the coregionalization model of soil properties correctly in order to investigate the effects regarding this reproduction. It is illustrated in a real case of soil slope. The results showed that, for the unconditional simulation, the presented approach reached a perfect agreement with the coregionalization model, while the conditional simulation inserted some disturbances to this agreement, but it still satisfactorily reproduced the model. The original RFEM failed to reproduce this structure, leading to lower variances than the presented approach, which would cause a non-conservative design. Furthermore, disregarding the local uncertainty (i.e., the nugget effect) may introduce bias to analysis and, depending on its magnitude, may also lead the conditional analysis to not show a worthwhile reduction in variances of results. Finally, this paper shows that correctly determining the coregionalization model and reproducing it on probabilistic analysis may meaningfully influence the results.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28927/sr.2022.076121\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2022.076121","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

工程总是处理不确定性,并且需要努力对它们进行量化。概率分析将问题的统计信息考虑到此量化。在岩土工程领域,不确定性在结构设计中起着特殊的作用,因为它涉及自然形成的材料。评估空间变异性变得越来越重要。然而,对这种可变性的正确再现和条件模拟的研究是有限的。本文提出了一种基于地质统计学的随机有限元法(RFEM)改进方法。本研究的主要目的是结合一种先进的多元地质统计学技术(即TBCOSIM)来正确地再现土壤性质的共区域化模型,以便研究这种再现的影响。并以土坡为例进行了说明。结果表明,对于无条件模拟,本文方法与共区域化模型完全一致,而条件模拟在一致性中插入了一些干扰,但仍能令人满意地再现模型。最初的RFEM未能重现这种结构,导致方差低于所提出的方法,这将导致非保守设计。此外,忽略局部不确定性(即金块效应)可能会给分析带来偏差,并且根据其大小,也可能导致条件分析无法显示出结果方差的有价值的减少。最后,本文表明,正确地确定共区域化模型并在概率分析上再现它可能对结果产生有意义的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geostatistical-based enhancement of RFEM regarding reproduction of spatial correlation structures and conditional simulations
Engineering always deals with uncertainties, and efforts are needed to quantify them. A probabilistic analysis considers the statistical information of the problem to this quantification. In the geotechnical area, uncertainties play a particular role in structure design because it deals with naturally formed materials. Evaluating spatial variability has become progressively important. However, studies on the correct reproduction of this variability and conditional simulations are limited. In this paper, a geostatistical-based enhancement of the Random Finite Element Method (RFEM) is presented. The main aim of this study is to incorporate an advanced multivariate geostatistical technique (i.e., Turning Bands Co-simulation, TBCOSIM) to reproduce the coregionalization model of soil properties correctly in order to investigate the effects regarding this reproduction. It is illustrated in a real case of soil slope. The results showed that, for the unconditional simulation, the presented approach reached a perfect agreement with the coregionalization model, while the conditional simulation inserted some disturbances to this agreement, but it still satisfactorily reproduced the model. The original RFEM failed to reproduce this structure, leading to lower variances than the presented approach, which would cause a non-conservative design. Furthermore, disregarding the local uncertainty (i.e., the nugget effect) may introduce bias to analysis and, depending on its magnitude, may also lead the conditional analysis to not show a worthwhile reduction in variances of results. Finally, this paper shows that correctly determining the coregionalization model and reproducing it on probabilistic analysis may meaningfully influence the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
The change process questionnaire (CPQ): A psychometric validation. Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families. Does Resilience Mediate the Relationship Between Negative Self-Image and Psychological Distress in Middle-Aged and Older Gay and Bisexual Men? Intergenerational Relations and Well-being Among Older Middle Eastern/Arab American Immigrants During the COVID-19 Pandemic. Caregiving Appraisals and Emotional Valence: Moderating Effects of Activity Participation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1