碳酸二甲酯与1,4-丁二醇酯交换制备碳酸双(2-甲基)丁烯酯的动力学

IF 1.5 4区 化学 Q4 CHEMISTRY, PHYSICAL International Journal of Chemical Kinetics Pub Date : 2023-07-31 DOI:10.1002/kin.21687
Yanfang Zhao, Tingting Pei, Rihui Liang, Guoliang Zhao, Zhongkai Yang
{"title":"碳酸二甲酯与1,4-丁二醇酯交换制备碳酸双(2-甲基)丁烯酯的动力学","authors":"Yanfang Zhao,&nbsp;Tingting Pei,&nbsp;Rihui Liang,&nbsp;Guoliang Zhao,&nbsp;Zhongkai Yang","doi":"10.1002/kin.21687","DOIUrl":null,"url":null,"abstract":"<p>The kinetic behavior of bis(2-methyl) butylene carbonate (BMBC) by the transesterification of dimethyl carbonate (DMC) with 1,4-butanediol (BDO) was investigated experimentally and theoretically. The Fourier transform infrared spectroscopy (FTIRs) test confirmed that the BMBC was successfully synthesized. The optimum preparation process of BMBC was investigated at atmospheric pressure, where Zn(Ac)<sub>2</sub>∙2H<sub>2</sub>O was the best catalyst for this transesterification reaction, and the optimal concentration was 0.3 wt%. The conversion was determined by measuring the amount of methanol produced during the reaction by refractometric method. A kinetic model was proposed according to the experimental results. The results showed that the transesterification reaction was a pseudo-first-order reaction. The apparent activation energy (<i>E<sub>a</sub></i>) significantly decreased with the increase of catalyst concentration from 0.1 wt% to 0.5 wt%. The <i>E</i><sub>a</sub> of the reaction was 102.13, 84.36, and 70.18 kJ mol<sup>−1</sup>, respectively, when the catalyst concentration was 0.1 wt%, 0.3 wt%, and 0.5 wt%. Furthermore, the parameters of the optimal heating curve in the batch reactor was obtained according to the optimal model.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"55 12","pages":"785-794"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics of bis(2-methyl) butylene carbonate by transesterification of dimethyl carbonate with 1,4-butanediol\",\"authors\":\"Yanfang Zhao,&nbsp;Tingting Pei,&nbsp;Rihui Liang,&nbsp;Guoliang Zhao,&nbsp;Zhongkai Yang\",\"doi\":\"10.1002/kin.21687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The kinetic behavior of bis(2-methyl) butylene carbonate (BMBC) by the transesterification of dimethyl carbonate (DMC) with 1,4-butanediol (BDO) was investigated experimentally and theoretically. The Fourier transform infrared spectroscopy (FTIRs) test confirmed that the BMBC was successfully synthesized. The optimum preparation process of BMBC was investigated at atmospheric pressure, where Zn(Ac)<sub>2</sub>∙2H<sub>2</sub>O was the best catalyst for this transesterification reaction, and the optimal concentration was 0.3 wt%. The conversion was determined by measuring the amount of methanol produced during the reaction by refractometric method. A kinetic model was proposed according to the experimental results. The results showed that the transesterification reaction was a pseudo-first-order reaction. The apparent activation energy (<i>E<sub>a</sub></i>) significantly decreased with the increase of catalyst concentration from 0.1 wt% to 0.5 wt%. The <i>E</i><sub>a</sub> of the reaction was 102.13, 84.36, and 70.18 kJ mol<sup>−1</sup>, respectively, when the catalyst concentration was 0.1 wt%, 0.3 wt%, and 0.5 wt%. Furthermore, the parameters of the optimal heating curve in the batch reactor was obtained according to the optimal model.</p>\",\"PeriodicalId\":13894,\"journal\":{\"name\":\"International Journal of Chemical Kinetics\",\"volume\":\"55 12\",\"pages\":\"785-794\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Kinetics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/kin.21687\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21687","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

实验和理论研究了碳酸二甲酯(DMC)与1,4-丁二醇(BDO)酯交换制备碳酸二(2-甲基)丁烯酯(BMBC)的动力学行为。傅立叶变换红外光谱(FTIRs)测试证实了BMBC的成功合成。研究了大气压下BMBC的最佳制备工艺,其中Zn(Ac)2∙2H2O是该酯交换反应的最佳催化剂,最佳浓度为0.3wt%。通过折射法测量反应过程中产生的甲醇量来确定转化率。根据实验结果提出了动力学模型。结果表明,该酯交换反应为一级反应。表观活化能(Ea)随着催化剂浓度从0.1 wt%增加到0.5 wt%而显著降低。当催化剂浓度为0.1 wt%、0.3 wt%和0.5 wt%时,反应的Ea分别为102.13、84.36和70.18 kJ mol−1。此外,根据优化模型,得到了间歇式反应器最佳加热曲线的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinetics of bis(2-methyl) butylene carbonate by transesterification of dimethyl carbonate with 1,4-butanediol

The kinetic behavior of bis(2-methyl) butylene carbonate (BMBC) by the transesterification of dimethyl carbonate (DMC) with 1,4-butanediol (BDO) was investigated experimentally and theoretically. The Fourier transform infrared spectroscopy (FTIRs) test confirmed that the BMBC was successfully synthesized. The optimum preparation process of BMBC was investigated at atmospheric pressure, where Zn(Ac)2∙2H2O was the best catalyst for this transesterification reaction, and the optimal concentration was 0.3 wt%. The conversion was determined by measuring the amount of methanol produced during the reaction by refractometric method. A kinetic model was proposed according to the experimental results. The results showed that the transesterification reaction was a pseudo-first-order reaction. The apparent activation energy (Ea) significantly decreased with the increase of catalyst concentration from 0.1 wt% to 0.5 wt%. The Ea of the reaction was 102.13, 84.36, and 70.18 kJ mol−1, respectively, when the catalyst concentration was 0.1 wt%, 0.3 wt%, and 0.5 wt%. Furthermore, the parameters of the optimal heating curve in the batch reactor was obtained according to the optimal model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.70%
发文量
74
审稿时长
3 months
期刊介绍: As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.
期刊最新文献
Issue Information Issue Information Issue Information Decomposition of CH 3 NH 2 ${\rm CH}_3{\rm NH}_2$ : Implications for CH x / NH y ${\rm CH}_{\rm {\it x}}/{\rm NH}_{\rm {\it y}}$ radical–radical reactions Force training neural network potential energy surface models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1