{"title":"具有分布延迟的空间分数阶正弦戈登方程的单参数有限差分方法及其加速格式","authors":"T. Sun, Chengjian Sun","doi":"10.4208/jcm.2206-m2021-0240","DOIUrl":null,"url":null,"abstract":"This paper deals with numerical methods for solving one-dimensional (1D) and two-dimensional (2D) initial-boundary value problems (IBVPs) of space-fractional sine-Gordon equations (SGEs) with distributed delay. For 1D problems, we construct a kind of one-parameter finite difference (OPFD) method. It is shown that, under a suitable condition, the proposed method is convergent with second order accuracy both in time and space. In implementation, the preconditioned conjugate gradient (PCG) method with the Strang circulant preconditioner is carried out to improve the computational efficiency of the OPFD method. For 2D problems, we develop another kind of OPFD method. For such a method, two classes of accelerated schemes are suggested, one is alternative direction implicit (ADI) scheme and the other is ADI-PCG scheme. In particular, we prove that ADI scheme can arrive at second-order accuracy in time and space. With some numerical experiments, the computational effectiveness and accuracy of the methods are further verified. Moreover, for the suggested methods, a numerical comparison in computational efficiency is presented.","PeriodicalId":50225,"journal":{"name":"Journal of Computational Mathematics","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-Parameter Finite Difference Methods and Their Accelerated Schemes for Space-Fractional Sine-Gordon Equations with Distributed Delay\",\"authors\":\"T. Sun, Chengjian Sun\",\"doi\":\"10.4208/jcm.2206-m2021-0240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with numerical methods for solving one-dimensional (1D) and two-dimensional (2D) initial-boundary value problems (IBVPs) of space-fractional sine-Gordon equations (SGEs) with distributed delay. For 1D problems, we construct a kind of one-parameter finite difference (OPFD) method. It is shown that, under a suitable condition, the proposed method is convergent with second order accuracy both in time and space. In implementation, the preconditioned conjugate gradient (PCG) method with the Strang circulant preconditioner is carried out to improve the computational efficiency of the OPFD method. For 2D problems, we develop another kind of OPFD method. For such a method, two classes of accelerated schemes are suggested, one is alternative direction implicit (ADI) scheme and the other is ADI-PCG scheme. In particular, we prove that ADI scheme can arrive at second-order accuracy in time and space. With some numerical experiments, the computational effectiveness and accuracy of the methods are further verified. Moreover, for the suggested methods, a numerical comparison in computational efficiency is presented.\",\"PeriodicalId\":50225,\"journal\":{\"name\":\"Journal of Computational Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jcm.2206-m2021-0240\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jcm.2206-m2021-0240","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
One-Parameter Finite Difference Methods and Their Accelerated Schemes for Space-Fractional Sine-Gordon Equations with Distributed Delay
This paper deals with numerical methods for solving one-dimensional (1D) and two-dimensional (2D) initial-boundary value problems (IBVPs) of space-fractional sine-Gordon equations (SGEs) with distributed delay. For 1D problems, we construct a kind of one-parameter finite difference (OPFD) method. It is shown that, under a suitable condition, the proposed method is convergent with second order accuracy both in time and space. In implementation, the preconditioned conjugate gradient (PCG) method with the Strang circulant preconditioner is carried out to improve the computational efficiency of the OPFD method. For 2D problems, we develop another kind of OPFD method. For such a method, two classes of accelerated schemes are suggested, one is alternative direction implicit (ADI) scheme and the other is ADI-PCG scheme. In particular, we prove that ADI scheme can arrive at second-order accuracy in time and space. With some numerical experiments, the computational effectiveness and accuracy of the methods are further verified. Moreover, for the suggested methods, a numerical comparison in computational efficiency is presented.
期刊介绍:
Journal of Computational Mathematics (JCM) is an international scientific computing journal founded by Professor Feng Kang in 1983, which is the first Chinese computational mathematics journal published in English. JCM covers all branches of modern computational mathematics such as numerical linear algebra, numerical optimization, computational geometry, numerical PDEs, and inverse problems. JCM has been sponsored by the Institute of Computational Mathematics of the Chinese Academy of Sciences.