Shuangyong Zhang, Hong Wang, Zixi Zheng, Tianyu Liu, Weixin Li, Zishan Zhang, Yanshen Sun
{"title":"基于自适应通道优化的多视图图对比学习在脑电信号抑郁检测中的应用","authors":"Shuangyong Zhang, Hong Wang, Zixi Zheng, Tianyu Liu, Weixin Li, Zishan Zhang, Yanshen Sun","doi":"10.1142/S0129065723500557","DOIUrl":null,"url":null,"abstract":"<p><p>Automated detection of depression using Electroencephalogram (EEG) signals has become a promising application in advanced bioinformatics technology. Although current methods have achieved high detection performance, several challenges still need to be addressed: (1) Previous studies do not consider data redundancy when modeling multi-channel EEG signals, resulting in some unrecognized noise channels remaining. (2) Most works focus on the functional connection of EEG signals, ignoring their spatial proximity. The spatial topological structure of EEG signals has not been fully utilized to capture more fine-grained features. (3) Prior depression detection models fail to provide interpretability. To address these challenges, this paper proposes a new model, <b>M</b>ulti-view <b>G</b>raph <b>C</b>ontrastive <b>L</b>earning via <b>A</b>daptive <b>C</b>hannel <b>O</b>ptimization (MGCL-ACO) for depression detection in EEG signals. Specifically, the proposed model first selects the critical channels by maximizing the mutual information between tracks and labels of EEG signals to eliminate data redundancy. Then, the MGCL-ACO model builds two similarity metric views based on functional connectivity and spatial proximity. MGCL-ACO constructs the feature extraction module by graph convolutions and contrastive learning to capture more fine-grained features of different perspectives. Finally, our model provides interpretability by visualizing a brain map related to the significance scores of the selected channels. Extensive experiments have been performed on public datasets, and the results show that our proposed model outperforms the most advanced baselines. Our proposed model not only provides a promising approach for automated depression detection using optimal EEG signals but also has the potential to improve the accuracy and interpretability of depression diagnosis in clinical practice.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":"2350055"},"PeriodicalIF":5.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-View Graph Contrastive Learning via Adaptive Channel Optimization for Depression Detection in EEG Signals.\",\"authors\":\"Shuangyong Zhang, Hong Wang, Zixi Zheng, Tianyu Liu, Weixin Li, Zishan Zhang, Yanshen Sun\",\"doi\":\"10.1142/S0129065723500557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automated detection of depression using Electroencephalogram (EEG) signals has become a promising application in advanced bioinformatics technology. Although current methods have achieved high detection performance, several challenges still need to be addressed: (1) Previous studies do not consider data redundancy when modeling multi-channel EEG signals, resulting in some unrecognized noise channels remaining. (2) Most works focus on the functional connection of EEG signals, ignoring their spatial proximity. The spatial topological structure of EEG signals has not been fully utilized to capture more fine-grained features. (3) Prior depression detection models fail to provide interpretability. To address these challenges, this paper proposes a new model, <b>M</b>ulti-view <b>G</b>raph <b>C</b>ontrastive <b>L</b>earning via <b>A</b>daptive <b>C</b>hannel <b>O</b>ptimization (MGCL-ACO) for depression detection in EEG signals. Specifically, the proposed model first selects the critical channels by maximizing the mutual information between tracks and labels of EEG signals to eliminate data redundancy. Then, the MGCL-ACO model builds two similarity metric views based on functional connectivity and spatial proximity. MGCL-ACO constructs the feature extraction module by graph convolutions and contrastive learning to capture more fine-grained features of different perspectives. Finally, our model provides interpretability by visualizing a brain map related to the significance scores of the selected channels. Extensive experiments have been performed on public datasets, and the results show that our proposed model outperforms the most advanced baselines. Our proposed model not only provides a promising approach for automated depression detection using optimal EEG signals but also has the potential to improve the accuracy and interpretability of depression diagnosis in clinical practice.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\" \",\"pages\":\"2350055\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065723500557\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065723500557","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-View Graph Contrastive Learning via Adaptive Channel Optimization for Depression Detection in EEG Signals.
Automated detection of depression using Electroencephalogram (EEG) signals has become a promising application in advanced bioinformatics technology. Although current methods have achieved high detection performance, several challenges still need to be addressed: (1) Previous studies do not consider data redundancy when modeling multi-channel EEG signals, resulting in some unrecognized noise channels remaining. (2) Most works focus on the functional connection of EEG signals, ignoring their spatial proximity. The spatial topological structure of EEG signals has not been fully utilized to capture more fine-grained features. (3) Prior depression detection models fail to provide interpretability. To address these challenges, this paper proposes a new model, Multi-view Graph Contrastive Learning via Adaptive Channel Optimization (MGCL-ACO) for depression detection in EEG signals. Specifically, the proposed model first selects the critical channels by maximizing the mutual information between tracks and labels of EEG signals to eliminate data redundancy. Then, the MGCL-ACO model builds two similarity metric views based on functional connectivity and spatial proximity. MGCL-ACO constructs the feature extraction module by graph convolutions and contrastive learning to capture more fine-grained features of different perspectives. Finally, our model provides interpretability by visualizing a brain map related to the significance scores of the selected channels. Extensive experiments have been performed on public datasets, and the results show that our proposed model outperforms the most advanced baselines. Our proposed model not only provides a promising approach for automated depression detection using optimal EEG signals but also has the potential to improve the accuracy and interpretability of depression diagnosis in clinical practice.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.