不同损失函数下变静音威布尔分布的贝叶斯估计

Pub Date : 2020-12-30 DOI:10.13052/jrss0974-8024.13245
Rahila Yousaf, Sajid Ali, M. Aslam
{"title":"不同损失函数下变静音威布尔分布的贝叶斯估计","authors":"Rahila Yousaf, Sajid Ali, M. Aslam","doi":"10.13052/jrss0974-8024.13245","DOIUrl":null,"url":null,"abstract":"In this article, we aim to estimate the parameters of the transmuted Weibull distribution (TWD) using Bayesian approach, as the Weibull distribution plays an important role in reliability engineering and life testing problems. Informative and non-informative priors under squared error loss function (SELF), precautionary loss function (PLF) and quadratic loss function (QLF) are assumed to estimate the scale, the shape and the transmuted parameter of the TWD. In addition to this, we also compute the Bayesian credible intervals (BCIs). To estimate parameters, we adopt Markov Chain Monte Carlo (MCMC) technique assuming uncensored and censored environments in terms of different sample sizes and censoring rates. The posterior risks, associated with each estimator are used to compare the performance of different estimators. Two real data sets are analyzed to illustrate the flexibility of the proposed distribution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bayesian Estimation of Transmuted Weibull Distribution under Different Loss Functions\",\"authors\":\"Rahila Yousaf, Sajid Ali, M. Aslam\",\"doi\":\"10.13052/jrss0974-8024.13245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we aim to estimate the parameters of the transmuted Weibull distribution (TWD) using Bayesian approach, as the Weibull distribution plays an important role in reliability engineering and life testing problems. Informative and non-informative priors under squared error loss function (SELF), precautionary loss function (PLF) and quadratic loss function (QLF) are assumed to estimate the scale, the shape and the transmuted parameter of the TWD. In addition to this, we also compute the Bayesian credible intervals (BCIs). To estimate parameters, we adopt Markov Chain Monte Carlo (MCMC) technique assuming uncensored and censored environments in terms of different sample sizes and censoring rates. The posterior risks, associated with each estimator are used to compare the performance of different estimators. Two real data sets are analyzed to illustrate the flexibility of the proposed distribution.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jrss0974-8024.13245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jrss0974-8024.13245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于威布尔分布在可靠性工程和寿命测试问题中发挥着重要作用,因此本文旨在使用贝叶斯方法来估计转换威布尔分布(TWD)的参数。假设平方误差损失函数(SELF)、预防性损失函数(PLF)和二次损失函数(QLF)下的信息性和非信息性先验来估计TWD的规模、形状和转换参数。除此之外,我们还计算了贝叶斯可信区间(BCI)。为了估计参数,我们采用马尔可夫链蒙特卡罗(MCMC)技术,假设在不同样本量和删失率的情况下,存在未审查和删失环境。与每个估计器相关的后验风险用于比较不同估计器的性能。分析了两个真实的数据集,以说明所提出的分布的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Bayesian Estimation of Transmuted Weibull Distribution under Different Loss Functions
In this article, we aim to estimate the parameters of the transmuted Weibull distribution (TWD) using Bayesian approach, as the Weibull distribution plays an important role in reliability engineering and life testing problems. Informative and non-informative priors under squared error loss function (SELF), precautionary loss function (PLF) and quadratic loss function (QLF) are assumed to estimate the scale, the shape and the transmuted parameter of the TWD. In addition to this, we also compute the Bayesian credible intervals (BCIs). To estimate parameters, we adopt Markov Chain Monte Carlo (MCMC) technique assuming uncensored and censored environments in terms of different sample sizes and censoring rates. The posterior risks, associated with each estimator are used to compare the performance of different estimators. Two real data sets are analyzed to illustrate the flexibility of the proposed distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1