{"title":"非光滑图像分割中最小化方法的比较","authors":"L. Antonelli, V. De Simone","doi":"10.1515/caim-2018-0005","DOIUrl":null,"url":null,"abstract":"Abstract Segmentation is a typical task in image processing having as main goal the partitioning of the image into multiple segments in order to simplify its interpretation and analysis. One of the more popular segmentation model, formulated by Chan-Vese, is the piecewise constant Mumford-Shah model restricted to the case of two-phase segmentation. We consider a convex relaxation formulation of the segmentation model, that can be regarded as a nonsmooth optimization problem, because the presence of the l1-term. Two basic approaches in optimization can be distinguished to deal with its non differentiability: the smoothing methods and the nonsmoothing methods. In this work, a numerical comparison of some first order methods belongs of both approaches are presented. The relationships among the different methods are shown, and accuracy and efficiency tests are also performed on several images.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"9 1","pages":"68 - 86"},"PeriodicalIF":0.3000,"publicationDate":"2018-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Comparison of minimization methods for nonsmooth image segmentation\",\"authors\":\"L. Antonelli, V. De Simone\",\"doi\":\"10.1515/caim-2018-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Segmentation is a typical task in image processing having as main goal the partitioning of the image into multiple segments in order to simplify its interpretation and analysis. One of the more popular segmentation model, formulated by Chan-Vese, is the piecewise constant Mumford-Shah model restricted to the case of two-phase segmentation. We consider a convex relaxation formulation of the segmentation model, that can be regarded as a nonsmooth optimization problem, because the presence of the l1-term. Two basic approaches in optimization can be distinguished to deal with its non differentiability: the smoothing methods and the nonsmoothing methods. In this work, a numerical comparison of some first order methods belongs of both approaches are presented. The relationships among the different methods are shown, and accuracy and efficiency tests are also performed on several images.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"9 1\",\"pages\":\"68 - 86\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/caim-2018-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/caim-2018-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Comparison of minimization methods for nonsmooth image segmentation
Abstract Segmentation is a typical task in image processing having as main goal the partitioning of the image into multiple segments in order to simplify its interpretation and analysis. One of the more popular segmentation model, formulated by Chan-Vese, is the piecewise constant Mumford-Shah model restricted to the case of two-phase segmentation. We consider a convex relaxation formulation of the segmentation model, that can be regarded as a nonsmooth optimization problem, because the presence of the l1-term. Two basic approaches in optimization can be distinguished to deal with its non differentiability: the smoothing methods and the nonsmoothing methods. In this work, a numerical comparison of some first order methods belongs of both approaches are presented. The relationships among the different methods are shown, and accuracy and efficiency tests are also performed on several images.
期刊介绍:
Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.