阿塞拜疆手语dactyl字母的混合单词识别系统和数据集的开发

IF 2.4 3区 计算机科学 Q2 ACOUSTICS Speech Communication Pub Date : 2023-09-01 DOI:10.1016/j.specom.2023.102960
Jamaladdin Hasanov , Nigar Alishzade , Aykhan Nazimzade , Samir Dadashzade , Toghrul Tahirov
{"title":"阿塞拜疆手语dactyl字母的混合单词识别系统和数据集的开发","authors":"Jamaladdin Hasanov ,&nbsp;Nigar Alishzade ,&nbsp;Aykhan Nazimzade ,&nbsp;Samir Dadashzade ,&nbsp;Toghrul Tahirov","doi":"10.1016/j.specom.2023.102960","DOIUrl":null,"url":null,"abstract":"<div><p>The paper introduces a real-time fingerspelling-to-text translation system for the Azerbaijani Sign Language (AzSL), targeted to the clarification of the words with no available or ambiguous signs. The system consists of both statistical and probabilistic models, used in the sign recognition and sequence generation phases. Linguistic, technical, and <em>human–computer interaction</em>-related challenges, which are usually not considered in publicly available sign-based recognition application programming interfaces and tools, are addressed in this study. The specifics of the AzSL are reviewed, feature selection strategies are evaluated, and a robust model for the translation of hand signs is suggested. The two-stage recognition model exhibits high accuracy during real-time inference. Considering the lack of a publicly available dataset with the benchmark, a new, comprehensive AzSL dataset consisting of 13,444 samples collected by 221 volunteers is described and made publicly available for the sign language recognition community. To extend the dataset and make the model robust to changes, augmentation methods and their effect on the performance are analyzed. A lexicon-based validation method used for the probabilistic analysis and candidate word selection enhances the probability of the recognized phrases. Experiments delivered 94% accuracy on the test dataset, which was close to the real-time user experience. The dataset and implemented software are shared in a public repository for review and further research (CeDAR, 2021; Alishzade et al., 2022). The work has been presented at TeknoFest 2022 and ranked as the first in the category of <em>social-oriented technologies</em>.</p></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"153 ","pages":"Article 102960"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of a hybrid word recognition system and dataset for the Azerbaijani Sign Language dactyl alphabet\",\"authors\":\"Jamaladdin Hasanov ,&nbsp;Nigar Alishzade ,&nbsp;Aykhan Nazimzade ,&nbsp;Samir Dadashzade ,&nbsp;Toghrul Tahirov\",\"doi\":\"10.1016/j.specom.2023.102960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper introduces a real-time fingerspelling-to-text translation system for the Azerbaijani Sign Language (AzSL), targeted to the clarification of the words with no available or ambiguous signs. The system consists of both statistical and probabilistic models, used in the sign recognition and sequence generation phases. Linguistic, technical, and <em>human–computer interaction</em>-related challenges, which are usually not considered in publicly available sign-based recognition application programming interfaces and tools, are addressed in this study. The specifics of the AzSL are reviewed, feature selection strategies are evaluated, and a robust model for the translation of hand signs is suggested. The two-stage recognition model exhibits high accuracy during real-time inference. Considering the lack of a publicly available dataset with the benchmark, a new, comprehensive AzSL dataset consisting of 13,444 samples collected by 221 volunteers is described and made publicly available for the sign language recognition community. To extend the dataset and make the model robust to changes, augmentation methods and their effect on the performance are analyzed. A lexicon-based validation method used for the probabilistic analysis and candidate word selection enhances the probability of the recognized phrases. Experiments delivered 94% accuracy on the test dataset, which was close to the real-time user experience. The dataset and implemented software are shared in a public repository for review and further research (CeDAR, 2021; Alishzade et al., 2022). The work has been presented at TeknoFest 2022 and ranked as the first in the category of <em>social-oriented technologies</em>.</p></div>\",\"PeriodicalId\":49485,\"journal\":{\"name\":\"Speech Communication\",\"volume\":\"153 \",\"pages\":\"Article 102960\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Speech Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167639323000948\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167639323000948","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了阿塞拜疆手语(AzSL)的实时手指拼写到文本翻译系统,旨在澄清没有可用或模棱两可的符号的单词。该系统由统计模型和概率模型组成,用于符号识别和序列生成阶段。语言、技术和人机交互相关的挑战,通常在公开可用的基于符号的识别应用程序编程接口和工具中没有被考虑,在本研究中得到解决。回顾了手语翻译的具体情况,评估了特征选择策略,并提出了一个稳健的手语翻译模型。两阶段识别模型在实时推理中具有较高的准确率。考虑到缺乏具有基准的公开可用数据集,本文描述了由221名志愿者收集的13,444个样本组成的新的综合AzSL数据集,并将其公开提供给手语识别社区。为了扩展数据集并使模型对变化具有鲁棒性,分析了增强方法及其对性能的影响。基于词典的验证方法用于概率分析和候选词选择,提高了识别短语的概率。实验在测试数据集上提供了94%的准确率,接近实时用户体验。数据集和实现的软件在公共存储库中共享,以供审查和进一步研究(CeDAR, 2021;Alishzade et al., 2022)。这项工作已在TeknoFest 2022上展示,并在面向社会的技术类别中排名第一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a hybrid word recognition system and dataset for the Azerbaijani Sign Language dactyl alphabet

The paper introduces a real-time fingerspelling-to-text translation system for the Azerbaijani Sign Language (AzSL), targeted to the clarification of the words with no available or ambiguous signs. The system consists of both statistical and probabilistic models, used in the sign recognition and sequence generation phases. Linguistic, technical, and human–computer interaction-related challenges, which are usually not considered in publicly available sign-based recognition application programming interfaces and tools, are addressed in this study. The specifics of the AzSL are reviewed, feature selection strategies are evaluated, and a robust model for the translation of hand signs is suggested. The two-stage recognition model exhibits high accuracy during real-time inference. Considering the lack of a publicly available dataset with the benchmark, a new, comprehensive AzSL dataset consisting of 13,444 samples collected by 221 volunteers is described and made publicly available for the sign language recognition community. To extend the dataset and make the model robust to changes, augmentation methods and their effect on the performance are analyzed. A lexicon-based validation method used for the probabilistic analysis and candidate word selection enhances the probability of the recognized phrases. Experiments delivered 94% accuracy on the test dataset, which was close to the real-time user experience. The dataset and implemented software are shared in a public repository for review and further research (CeDAR, 2021; Alishzade et al., 2022). The work has been presented at TeknoFest 2022 and ranked as the first in the category of social-oriented technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Speech Communication
Speech Communication 工程技术-计算机:跨学科应用
CiteScore
6.80
自引率
6.20%
发文量
94
审稿时长
19.2 weeks
期刊介绍: Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results. The journal''s primary objectives are: • to present a forum for the advancement of human and human-machine speech communication science; • to stimulate cross-fertilization between different fields of this domain; • to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.
期刊最新文献
Fixed frequency range empirical wavelet transform based acoustic and entropy features for speech emotion recognition AFP-Conformer: Asymptotic feature pyramid conformer for spoofing speech detection A robust temporal map of speech monitoring from planning to articulation The combined effects of bilingualism and musicianship on listeners’ perception of non-native lexical tones Evaluating the effects of continuous pitch and speech tempo modifications on perceptual speaker verification performance by familiar and unfamiliar listeners
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1