Yinchun Zhang, Xuan Chen, Xiaoxia Yang, Lei Huang, Xiaoling Qiu
{"title":"口腔组织间充质干细胞相关lncRNAs:成骨分化的新调控因子","authors":"Yinchun Zhang, Xuan Chen, Xiaoxia Yang, Lei Huang, Xiaoling Qiu","doi":"10.1155/2023/4622584","DOIUrl":null,"url":null,"abstract":"Odontogenic stem cells are mesenchymal stem cells (MSCs) with multipotential differentiation potential from different dental tissues. Their osteogenic differentiation is of great significance in bone tissue engineering. In recent years, it has been found that long noncoding RNAs (lncRNAs) participate in regulating the osteoblastic differentiation of stem cells at the epigenetic level, transcriptional level, and posttranscriptional level. We reviewed the existing lncRNA related to the osteogenic differentiation of odontogenic stem cells and emphasized the critical mechanism of lncRNA in the osteogenic differentiation of odontogenic stem cells. These findings are expected to be an important target for promoting osteoblastic differentiation of odontogenic stem cells in bone regeneration therapy with lncRNA.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mesenchymal Stem Cell-Derived from Dental Tissues-Related lncRNAs: A New Regulator in Osteogenic Differentiation\",\"authors\":\"Yinchun Zhang, Xuan Chen, Xiaoxia Yang, Lei Huang, Xiaoling Qiu\",\"doi\":\"10.1155/2023/4622584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Odontogenic stem cells are mesenchymal stem cells (MSCs) with multipotential differentiation potential from different dental tissues. Their osteogenic differentiation is of great significance in bone tissue engineering. In recent years, it has been found that long noncoding RNAs (lncRNAs) participate in regulating the osteoblastic differentiation of stem cells at the epigenetic level, transcriptional level, and posttranscriptional level. We reviewed the existing lncRNA related to the osteogenic differentiation of odontogenic stem cells and emphasized the critical mechanism of lncRNA in the osteogenic differentiation of odontogenic stem cells. These findings are expected to be an important target for promoting osteoblastic differentiation of odontogenic stem cells in bone regeneration therapy with lncRNA.\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4622584\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/4622584","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Mesenchymal Stem Cell-Derived from Dental Tissues-Related lncRNAs: A New Regulator in Osteogenic Differentiation
Odontogenic stem cells are mesenchymal stem cells (MSCs) with multipotential differentiation potential from different dental tissues. Their osteogenic differentiation is of great significance in bone tissue engineering. In recent years, it has been found that long noncoding RNAs (lncRNAs) participate in regulating the osteoblastic differentiation of stem cells at the epigenetic level, transcriptional level, and posttranscriptional level. We reviewed the existing lncRNA related to the osteogenic differentiation of odontogenic stem cells and emphasized the critical mechanism of lncRNA in the osteogenic differentiation of odontogenic stem cells. These findings are expected to be an important target for promoting osteoblastic differentiation of odontogenic stem cells in bone regeneration therapy with lncRNA.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.