{"title":"高性能、低阻损石墨烯太阳能电池的设计","authors":"Mohammad Sabaeian, Yaser Hajati","doi":"10.1186/s41476-020-00136-5","DOIUrl":null,"url":null,"abstract":"<p>Despite metallic plasmonic excitations can enhance the performance of ultra-thin solar cells however these so-called plasmonic solar cells suffer from a large resistive (Ohmic) loss caused by metallic elements. In this work, we report on a new design that uses graphene nanoribbons (GNRs) in a two-dimensional (2D) grating form at the top of the semiconductor-on-insulator (SOI) solar cells aimed to reduce the resistive loss. The results showed that GNRs can remarkably reduce the resistive loss compared to the SOI cell with Ag nanograting, while keeping all other cell’s parameters, comparable with those of Ag SOI cell. Optical absorption and short-circuit current density of the graphene cells showed, respectively, enhancements of 18 and 1.7 times when optimizations were done with respect to width and the grating period. Our calculations showed that the graphene solar cells dissipate at most 5% of incident sunlight power as narrow and tiny peaks around 508?nm, which is noticeably lower than those of Ag solar cells with high and broad band peaks with the maximum values of 29% at 480?nm and 24% at 637?nm.</p>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41476-020-00136-5","citationCount":"5","resultStr":"{\"title\":\"Design of high performance and low resistive loss graphene solar cells\",\"authors\":\"Mohammad Sabaeian, Yaser Hajati\",\"doi\":\"10.1186/s41476-020-00136-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite metallic plasmonic excitations can enhance the performance of ultra-thin solar cells however these so-called plasmonic solar cells suffer from a large resistive (Ohmic) loss caused by metallic elements. In this work, we report on a new design that uses graphene nanoribbons (GNRs) in a two-dimensional (2D) grating form at the top of the semiconductor-on-insulator (SOI) solar cells aimed to reduce the resistive loss. The results showed that GNRs can remarkably reduce the resistive loss compared to the SOI cell with Ag nanograting, while keeping all other cell’s parameters, comparable with those of Ag SOI cell. Optical absorption and short-circuit current density of the graphene cells showed, respectively, enhancements of 18 and 1.7 times when optimizations were done with respect to width and the grating period. Our calculations showed that the graphene solar cells dissipate at most 5% of incident sunlight power as narrow and tiny peaks around 508?nm, which is noticeably lower than those of Ag solar cells with high and broad band peaks with the maximum values of 29% at 480?nm and 24% at 637?nm.</p>\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s41476-020-00136-5\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41476-020-00136-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-020-00136-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Design of high performance and low resistive loss graphene solar cells
Despite metallic plasmonic excitations can enhance the performance of ultra-thin solar cells however these so-called plasmonic solar cells suffer from a large resistive (Ohmic) loss caused by metallic elements. In this work, we report on a new design that uses graphene nanoribbons (GNRs) in a two-dimensional (2D) grating form at the top of the semiconductor-on-insulator (SOI) solar cells aimed to reduce the resistive loss. The results showed that GNRs can remarkably reduce the resistive loss compared to the SOI cell with Ag nanograting, while keeping all other cell’s parameters, comparable with those of Ag SOI cell. Optical absorption and short-circuit current density of the graphene cells showed, respectively, enhancements of 18 and 1.7 times when optimizations were done with respect to width and the grating period. Our calculations showed that the graphene solar cells dissipate at most 5% of incident sunlight power as narrow and tiny peaks around 508?nm, which is noticeably lower than those of Ag solar cells with high and broad band peaks with the maximum values of 29% at 480?nm and 24% at 637?nm.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.