{"title":"考虑生热、热辐射和滑移参数的层流边界层纳米流体沿移动圆柱体流动的数值解","authors":"T. M. Agbaje, G. Makanda","doi":"10.1155/2021/8288534","DOIUrl":null,"url":null,"abstract":"The investigation of the numerical solution of the laminar boundary layer flow along with a moving cylinder with heat generation, thermal radiation, and surface slip effect is carried out. The fluid mathematical model developed from the Navier-Stokes equations resulted in a system of partial differential equations which were then solved by the multidomain bivariate spectral quasilinearization method (MD-BSQLM). The results show that increasing the velocity slip factor results in an enhanced increase in velocity and temperature profiles. Increasing the heat generation parameter increases temperature profiles; increasing the radiation parameter and the Eckert numbers both increase the temperature profiles. The concentration profiles decrease with increasing radial coordinate. Increasing the Brownian motion and the thermophoresis parameter both destabilizes the concentration profiles. Increasing the Schmidt number reduces temperature profiles. The effect of increasing selected parameters: the velocity slip, Brownian motion, and the radiation parameter on all residual errors show that these errors do not deteriorate. This shows that the MD-BSQLM is very accurate and robust. The method was compared with similar results in the literature and was found to be in excellent agreement.","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Solutions for Laminar Boundary Layer Nanofluid Flow along with a Moving Cylinder with Heat Generation, Thermal Radiation, and Slip Parameter\",\"authors\":\"T. M. Agbaje, G. Makanda\",\"doi\":\"10.1155/2021/8288534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The investigation of the numerical solution of the laminar boundary layer flow along with a moving cylinder with heat generation, thermal radiation, and surface slip effect is carried out. The fluid mathematical model developed from the Navier-Stokes equations resulted in a system of partial differential equations which were then solved by the multidomain bivariate spectral quasilinearization method (MD-BSQLM). The results show that increasing the velocity slip factor results in an enhanced increase in velocity and temperature profiles. Increasing the heat generation parameter increases temperature profiles; increasing the radiation parameter and the Eckert numbers both increase the temperature profiles. The concentration profiles decrease with increasing radial coordinate. Increasing the Brownian motion and the thermophoresis parameter both destabilizes the concentration profiles. Increasing the Schmidt number reduces temperature profiles. The effect of increasing selected parameters: the velocity slip, Brownian motion, and the radiation parameter on all residual errors show that these errors do not deteriorate. This shows that the MD-BSQLM is very accurate and robust. The method was compared with similar results in the literature and was found to be in excellent agreement.\",\"PeriodicalId\":7061,\"journal\":{\"name\":\"Abstract and Applied Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstract and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/8288534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/8288534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Numerical Solutions for Laminar Boundary Layer Nanofluid Flow along with a Moving Cylinder with Heat Generation, Thermal Radiation, and Slip Parameter
The investigation of the numerical solution of the laminar boundary layer flow along with a moving cylinder with heat generation, thermal radiation, and surface slip effect is carried out. The fluid mathematical model developed from the Navier-Stokes equations resulted in a system of partial differential equations which were then solved by the multidomain bivariate spectral quasilinearization method (MD-BSQLM). The results show that increasing the velocity slip factor results in an enhanced increase in velocity and temperature profiles. Increasing the heat generation parameter increases temperature profiles; increasing the radiation parameter and the Eckert numbers both increase the temperature profiles. The concentration profiles decrease with increasing radial coordinate. Increasing the Brownian motion and the thermophoresis parameter both destabilizes the concentration profiles. Increasing the Schmidt number reduces temperature profiles. The effect of increasing selected parameters: the velocity slip, Brownian motion, and the radiation parameter on all residual errors show that these errors do not deteriorate. This shows that the MD-BSQLM is very accurate and robust. The method was compared with similar results in the literature and was found to be in excellent agreement.
期刊介绍:
Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.