{"title":"MIR22HG通过miR-9-3p/SH2B3轴加重氧-葡萄糖剥夺和再氧合诱导的心肌细胞损伤","authors":"Yi Ge, Lishi Liu, L. Luo, Yu Fang, Tong Ni","doi":"10.1155/2022/7332298","DOIUrl":null,"url":null,"abstract":"Reperfusion therapy, the standard treatment for acute myocardial infarction (MI), can trigger necrotic death of cardiomyocytes and provoke ischemia/reperfusion (I/R) injury. However, molecular mechanisms that regulate cardiomyocyte death remain largely unknown. The abnormal expression of lncRNA MIR22HG has been found in types of diseases. The current study was aimed at exploring the function and mechanism of MIR22HG in I/R injury. In this study, mouse myocardial cells (HL-1) treated with oxygen-glucose deprivation and reoxygenation (OGD/R) were used as the in vitro models, and myocardial ischemia reperfusion injury (MIRI) animal models in vivo were established in male C57BL/6 mice. Experiments including CCK-8, flow cytometry, TUNEL, HE staining, RT-qPCR, western blotting, and luciferase reporter assays were performed to explore the function and potential mechanism of MIR22HG in MIRI in vitro and in vivo. Bioinformatics analysis was performed to predict the binding site between miR-9-3p and MIR22HG (or SH2B3). Our results indicated that the MIR22HG level was upregulated in cardiomyocytes after OGD/R treatment. The knockdown of MIR22HG promoted cell viability and inhibited apoptosis and extracellular matrix (ECM) production in OGD/R-treated HL-1 cells. In mechanism, MIR22HG binds to miR-9-3p, and miR-9-3p targets the SH2B3 3′ untranslated region (UTR). Moreover, SH2B3 expression was positively regulated by MIR22HG but negatively modulated by miR-9-3p. Rescue assays suggested that the suppressive effect of MIR22HG knockdown on cell viability, apoptosis, and ECM accumulation was reversed by the overexpression of SH2B3. The in vivo experiments demonstrated that MIR22HG knockdown alleviated cardiomyocyte apoptosis and reduced myocardial infarct size in MIRI mice. In summary, MIR22HG knockdown alleviates myocardial injury through the miR-9-3p/SH2B3 axis.","PeriodicalId":9582,"journal":{"name":"Cardiovascular Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MIR22HG Aggravates Oxygen-Glucose Deprivation and Reoxygenation-Induced Cardiomyocyte Injury through the miR-9-3p/SH2B3 Axis\",\"authors\":\"Yi Ge, Lishi Liu, L. Luo, Yu Fang, Tong Ni\",\"doi\":\"10.1155/2022/7332298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reperfusion therapy, the standard treatment for acute myocardial infarction (MI), can trigger necrotic death of cardiomyocytes and provoke ischemia/reperfusion (I/R) injury. However, molecular mechanisms that regulate cardiomyocyte death remain largely unknown. The abnormal expression of lncRNA MIR22HG has been found in types of diseases. The current study was aimed at exploring the function and mechanism of MIR22HG in I/R injury. In this study, mouse myocardial cells (HL-1) treated with oxygen-glucose deprivation and reoxygenation (OGD/R) were used as the in vitro models, and myocardial ischemia reperfusion injury (MIRI) animal models in vivo were established in male C57BL/6 mice. Experiments including CCK-8, flow cytometry, TUNEL, HE staining, RT-qPCR, western blotting, and luciferase reporter assays were performed to explore the function and potential mechanism of MIR22HG in MIRI in vitro and in vivo. Bioinformatics analysis was performed to predict the binding site between miR-9-3p and MIR22HG (or SH2B3). Our results indicated that the MIR22HG level was upregulated in cardiomyocytes after OGD/R treatment. The knockdown of MIR22HG promoted cell viability and inhibited apoptosis and extracellular matrix (ECM) production in OGD/R-treated HL-1 cells. In mechanism, MIR22HG binds to miR-9-3p, and miR-9-3p targets the SH2B3 3′ untranslated region (UTR). Moreover, SH2B3 expression was positively regulated by MIR22HG but negatively modulated by miR-9-3p. Rescue assays suggested that the suppressive effect of MIR22HG knockdown on cell viability, apoptosis, and ECM accumulation was reversed by the overexpression of SH2B3. The in vivo experiments demonstrated that MIR22HG knockdown alleviated cardiomyocyte apoptosis and reduced myocardial infarct size in MIRI mice. In summary, MIR22HG knockdown alleviates myocardial injury through the miR-9-3p/SH2B3 axis.\",\"PeriodicalId\":9582,\"journal\":{\"name\":\"Cardiovascular Therapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/7332298\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/7332298","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
MIR22HG Aggravates Oxygen-Glucose Deprivation and Reoxygenation-Induced Cardiomyocyte Injury through the miR-9-3p/SH2B3 Axis
Reperfusion therapy, the standard treatment for acute myocardial infarction (MI), can trigger necrotic death of cardiomyocytes and provoke ischemia/reperfusion (I/R) injury. However, molecular mechanisms that regulate cardiomyocyte death remain largely unknown. The abnormal expression of lncRNA MIR22HG has been found in types of diseases. The current study was aimed at exploring the function and mechanism of MIR22HG in I/R injury. In this study, mouse myocardial cells (HL-1) treated with oxygen-glucose deprivation and reoxygenation (OGD/R) were used as the in vitro models, and myocardial ischemia reperfusion injury (MIRI) animal models in vivo were established in male C57BL/6 mice. Experiments including CCK-8, flow cytometry, TUNEL, HE staining, RT-qPCR, western blotting, and luciferase reporter assays were performed to explore the function and potential mechanism of MIR22HG in MIRI in vitro and in vivo. Bioinformatics analysis was performed to predict the binding site between miR-9-3p and MIR22HG (or SH2B3). Our results indicated that the MIR22HG level was upregulated in cardiomyocytes after OGD/R treatment. The knockdown of MIR22HG promoted cell viability and inhibited apoptosis and extracellular matrix (ECM) production in OGD/R-treated HL-1 cells. In mechanism, MIR22HG binds to miR-9-3p, and miR-9-3p targets the SH2B3 3′ untranslated region (UTR). Moreover, SH2B3 expression was positively regulated by MIR22HG but negatively modulated by miR-9-3p. Rescue assays suggested that the suppressive effect of MIR22HG knockdown on cell viability, apoptosis, and ECM accumulation was reversed by the overexpression of SH2B3. The in vivo experiments demonstrated that MIR22HG knockdown alleviated cardiomyocyte apoptosis and reduced myocardial infarct size in MIRI mice. In summary, MIR22HG knockdown alleviates myocardial injury through the miR-9-3p/SH2B3 axis.
期刊介绍:
Cardiovascular Therapeutics (formerly Cardiovascular Drug Reviews) is a peer-reviewed, Open Access journal that publishes original research and review articles focusing on cardiovascular and clinical pharmacology, as well as clinical trials of new cardiovascular therapies. Articles on translational research, pharmacogenomics and personalized medicine, device, gene and cell therapies, and pharmacoepidemiology are also encouraged.
Subject areas include (but are by no means limited to):
Acute coronary syndrome
Arrhythmias
Atherosclerosis
Basic cardiac electrophysiology
Cardiac catheterization
Cardiac remodeling
Coagulation and thrombosis
Diabetic cardiovascular disease
Heart failure (systolic HF, HFrEF, diastolic HF, HFpEF)
Hyperlipidemia
Hypertension
Ischemic heart disease
Vascular biology
Ventricular assist devices
Molecular cardio-biology
Myocardial regeneration
Lipoprotein metabolism
Radial artery access
Percutaneous coronary intervention
Transcatheter aortic and mitral valve replacement.