奇异值迭代学习控制初始输入构造的一个上限

Naser Alajmi, Ali Alobaidly, Mubarak K. Alhajri, Salem H. Salamah, M. A. Alsubaie
{"title":"奇异值迭代学习控制初始输入构造的一个上限","authors":"Naser Alajmi, Ali Alobaidly, Mubarak K. Alhajri, Salem H. Salamah, M. A. Alsubaie","doi":"10.4236/ICA.2017.83012","DOIUrl":null,"url":null,"abstract":"Selecting a proper initial input for Iterative Learning Control (ILC) algorithms has been shown to offer faster learning speed compared to the same theories if a system starts from blind. Iterative Learning Control is a control technique that uses previous successive projections to update the following execution/trial input such that a reference is followed to a high precision. In ILC, convergence of the error is generally highly dependent on the initial choice of input applied to the plant, thus a good choice of initial start would make learning faster and as a consequence the error tends to zero faster as well. Here in this paper, an upper limit to the initial choice construction for the input signal for trial 1 is set such that the system would not tend to respond aggressively due to the uncertainty that lies in high frequencies. The provided limit is found in term of singular values and simulation results obtained illustrate the theory behind.","PeriodicalId":62904,"journal":{"name":"智能控制与自动化(英文)","volume":"08 1","pages":"154-163"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Upper Limit for Iterative Learning Control Initial Input Construction Using Singular Values\",\"authors\":\"Naser Alajmi, Ali Alobaidly, Mubarak K. Alhajri, Salem H. Salamah, M. A. Alsubaie\",\"doi\":\"10.4236/ICA.2017.83012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selecting a proper initial input for Iterative Learning Control (ILC) algorithms has been shown to offer faster learning speed compared to the same theories if a system starts from blind. Iterative Learning Control is a control technique that uses previous successive projections to update the following execution/trial input such that a reference is followed to a high precision. In ILC, convergence of the error is generally highly dependent on the initial choice of input applied to the plant, thus a good choice of initial start would make learning faster and as a consequence the error tends to zero faster as well. Here in this paper, an upper limit to the initial choice construction for the input signal for trial 1 is set such that the system would not tend to respond aggressively due to the uncertainty that lies in high frequencies. The provided limit is found in term of singular values and simulation results obtained illustrate the theory behind.\",\"PeriodicalId\":62904,\"journal\":{\"name\":\"智能控制与自动化(英文)\",\"volume\":\"08 1\",\"pages\":\"154-163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"智能控制与自动化(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/ICA.2017.83012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能控制与自动化(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/ICA.2017.83012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与相同的理论相比,如果系统从盲开始,为迭代学习控制(ILC)算法选择合适的初始输入可以提供更快的学习速度。迭代学习控制是一种控制技术,它使用以前的连续投影来更新下面的执行/试验输入,从而使参考达到高精度。在ILC中,误差的收敛性通常高度依赖于应用于对象的输入的初始选择,因此,良好的初始启动选择将使学习更快,因此误差也趋向于更快地归零。在本文中,试验1的输入信号的初始选择结构的上限被设置为使得系统不会由于高频中的不确定性而倾向于积极响应。所提供的极限是根据奇异值找到的,所获得的模拟结果说明了背后的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Upper Limit for Iterative Learning Control Initial Input Construction Using Singular Values
Selecting a proper initial input for Iterative Learning Control (ILC) algorithms has been shown to offer faster learning speed compared to the same theories if a system starts from blind. Iterative Learning Control is a control technique that uses previous successive projections to update the following execution/trial input such that a reference is followed to a high precision. In ILC, convergence of the error is generally highly dependent on the initial choice of input applied to the plant, thus a good choice of initial start would make learning faster and as a consequence the error tends to zero faster as well. Here in this paper, an upper limit to the initial choice construction for the input signal for trial 1 is set such that the system would not tend to respond aggressively due to the uncertainty that lies in high frequencies. The provided limit is found in term of singular values and simulation results obtained illustrate the theory behind.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
243
期刊最新文献
Maximizing the Efficiency of Automation Solutions with Automation 360: Approaches for Developing Subtasks and Retry Framework Data-Driven Model Identification and Control of the Inertial Systems Using Singular Value to Set Output Disturbance Limits to Feedback ILC Control Blockchain-Based Islamic Marriage Certification with the Supremacy of Web 3.0 Artificial Intelligence Trends and Ethics: Issues and Alternatives for Investors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1