概率单纯形的几何及其与最大熵法的联系

IF 0.3 Q4 MATHEMATICS, APPLIED Journal of Applied Mathematics Statistics and Informatics Pub Date : 2020-05-01 DOI:10.2478/jamsi-2020-0003
H. Gzyl, F. Nielsen
{"title":"概率单纯形的几何及其与最大熵法的联系","authors":"H. Gzyl, F. Nielsen","doi":"10.2478/jamsi-2020-0003","DOIUrl":null,"url":null,"abstract":"Abstract The use of geometrical methods in statistics has a long and rich history highlighting many different aspects. These methods are usually based on a Riemannian structure defined on the space of parameters that characterize a family of probabilities. In this paper, we consider the finite dimensional case but the basic ideas can be extended similarly to the infinite-dimensional case. Our aim is to understand exponential families of probabilities on a finite set from an intrinsic geometrical point of view and not through the parameters that characterize some given family of probabilities. For that purpose, we consider a Riemannian geometry defined on the set of positive vectors in a finite-dimensional space. In this space, the probabilities on a finite set comprise a submanifold in which exponential families correspond to geodesic surfaces. We shall also obtain a geometric/dynamic interpretation of Jaynes’ method of maximum entropy.","PeriodicalId":43016,"journal":{"name":"Journal of Applied Mathematics Statistics and Informatics","volume":"16 1","pages":"25 - 35"},"PeriodicalIF":0.3000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Geometry of the probability simplex and its connection to the maximum entropy method\",\"authors\":\"H. Gzyl, F. Nielsen\",\"doi\":\"10.2478/jamsi-2020-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The use of geometrical methods in statistics has a long and rich history highlighting many different aspects. These methods are usually based on a Riemannian structure defined on the space of parameters that characterize a family of probabilities. In this paper, we consider the finite dimensional case but the basic ideas can be extended similarly to the infinite-dimensional case. Our aim is to understand exponential families of probabilities on a finite set from an intrinsic geometrical point of view and not through the parameters that characterize some given family of probabilities. For that purpose, we consider a Riemannian geometry defined on the set of positive vectors in a finite-dimensional space. In this space, the probabilities on a finite set comprise a submanifold in which exponential families correspond to geodesic surfaces. We shall also obtain a geometric/dynamic interpretation of Jaynes’ method of maximum entropy.\",\"PeriodicalId\":43016,\"journal\":{\"name\":\"Journal of Applied Mathematics Statistics and Informatics\",\"volume\":\"16 1\",\"pages\":\"25 - 35\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics Statistics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jamsi-2020-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics Statistics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jamsi-2020-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

几何方法在统计学中的应用有着悠久而丰富的历史,突出了许多不同的方面。这些方法通常基于黎曼结构,该结构定义在表征概率族的参数空间上。在本文中,我们考虑有限维情况,但基本思想可以类似地推广到无限维情况。我们的目标是从内在的几何角度来理解有限集合上的指数族概率,而不是通过表征某些给定概率族的参数。为此,我们考虑在有限维空间中的正向量集合上定义的黎曼几何。在这个空间中,有限集合上的概率由子流形组成,其中指数族对应于测地线表面。我们还将得到Jaynes最大熵方法的几何/动态解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geometry of the probability simplex and its connection to the maximum entropy method
Abstract The use of geometrical methods in statistics has a long and rich history highlighting many different aspects. These methods are usually based on a Riemannian structure defined on the space of parameters that characterize a family of probabilities. In this paper, we consider the finite dimensional case but the basic ideas can be extended similarly to the infinite-dimensional case. Our aim is to understand exponential families of probabilities on a finite set from an intrinsic geometrical point of view and not through the parameters that characterize some given family of probabilities. For that purpose, we consider a Riemannian geometry defined on the set of positive vectors in a finite-dimensional space. In this space, the probabilities on a finite set comprise a submanifold in which exponential families correspond to geodesic surfaces. We shall also obtain a geometric/dynamic interpretation of Jaynes’ method of maximum entropy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
20 weeks
期刊最新文献
Towards image processing of reentry event Refinement of the general form of the two-point quadrature formulas via convexity Survival analysis of cancer patients using a new Lomax Rayleigh distribution Credit risk analysis using boosting methods Parameterized Simpson-like inequalities for differentiable Bounded and Lipschitzian functions with application example from management science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1