基于CEEMDAN和核极限学习机的短期太阳能发电预测

IF 0.9 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Elektronika Ir Elektrotechnika Pub Date : 2023-04-24 DOI:10.5755/j02.eie.33856
Ali Riza Gun, Emrah Dokur, U. Yuzgec, M. Kurban
{"title":"基于CEEMDAN和核极限学习机的短期太阳能发电预测","authors":"Ali Riza Gun, Emrah Dokur, U. Yuzgec, M. Kurban","doi":"10.5755/j02.eie.33856","DOIUrl":null,"url":null,"abstract":"The use of renewable energy sources contributes to environmental awareness and sustainable development policy. The inexhaustible and nonpolluting nature of solar energy has attracted worldwide attention. Accurate forecasting of solar power is vital for the reliability and stability of power systems. However, the effect of the intermittency nature of solar radiation makes the development of accurate prediction models challenging. This paper presents a hybrid model based on Kernel Extreme Learning Machine (Kernel-ELM) and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for short-term solar power forecasting. The decomposition technique increases the number of stable, stationary, and regular patterns of the original signals. Each decomposed signal is fed into Kernel-ELM. To validate the performance of the hybrid model, solar power data from the BSEU Renewable Energy Laboratory, measured at 5-minute intervals, are used. To validate the proposed model, its performance is compared to some state-of-the-art forecasting models with seasonal data. The results highlight the good performance of the proposed hybrid model compared to other classical algorithms according to the metrics.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-Term Solar Power Forecasting Based on CEEMDAN and Kernel Extreme Learning Machine\",\"authors\":\"Ali Riza Gun, Emrah Dokur, U. Yuzgec, M. Kurban\",\"doi\":\"10.5755/j02.eie.33856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of renewable energy sources contributes to environmental awareness and sustainable development policy. The inexhaustible and nonpolluting nature of solar energy has attracted worldwide attention. Accurate forecasting of solar power is vital for the reliability and stability of power systems. However, the effect of the intermittency nature of solar radiation makes the development of accurate prediction models challenging. This paper presents a hybrid model based on Kernel Extreme Learning Machine (Kernel-ELM) and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for short-term solar power forecasting. The decomposition technique increases the number of stable, stationary, and regular patterns of the original signals. Each decomposed signal is fed into Kernel-ELM. To validate the performance of the hybrid model, solar power data from the BSEU Renewable Energy Laboratory, measured at 5-minute intervals, are used. To validate the proposed model, its performance is compared to some state-of-the-art forecasting models with seasonal data. The results highlight the good performance of the proposed hybrid model compared to other classical algorithms according to the metrics.\",\"PeriodicalId\":51031,\"journal\":{\"name\":\"Elektronika Ir Elektrotechnika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika Ir Elektrotechnika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.33856\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.33856","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

使用可再生能源有助于提高环境意识和可持续发展政策。太阳能取之不尽用之不竭、无污染的特性引起了全世界的关注。准确预测太阳能发电量对电力系统的可靠性和稳定性至关重要。然而,太阳辐射的间歇性影响使得精确预测模型的开发具有挑战性。本文提出了一种基于核极限学习机(Kernel ELM)和带自适应噪声的完全集成经验模式分解(CEEMDAN)的短期太阳能预测混合模型。分解技术增加了原始信号的稳定、平稳和规则模式的数量。每个分解后的信号被馈送到内核ELM中。为了验证混合模型的性能,使用了BSEU可再生能源实验室每隔5分钟测量的太阳能数据。为了验证所提出的模型,将其性能与一些具有季节性数据的最先进预测模型进行了比较。根据度量,结果突出了所提出的混合模型与其他经典算法相比的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short-Term Solar Power Forecasting Based on CEEMDAN and Kernel Extreme Learning Machine
The use of renewable energy sources contributes to environmental awareness and sustainable development policy. The inexhaustible and nonpolluting nature of solar energy has attracted worldwide attention. Accurate forecasting of solar power is vital for the reliability and stability of power systems. However, the effect of the intermittency nature of solar radiation makes the development of accurate prediction models challenging. This paper presents a hybrid model based on Kernel Extreme Learning Machine (Kernel-ELM) and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for short-term solar power forecasting. The decomposition technique increases the number of stable, stationary, and regular patterns of the original signals. Each decomposed signal is fed into Kernel-ELM. To validate the performance of the hybrid model, solar power data from the BSEU Renewable Energy Laboratory, measured at 5-minute intervals, are used. To validate the proposed model, its performance is compared to some state-of-the-art forecasting models with seasonal data. The results highlight the good performance of the proposed hybrid model compared to other classical algorithms according to the metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Elektronika Ir Elektrotechnika
Elektronika Ir Elektrotechnika 工程技术-工程:电子与电气
CiteScore
2.40
自引率
7.70%
发文量
44
审稿时长
24 months
期刊介绍: The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible. The journal publishes regular papers dealing with the following areas, but not limited to: Electronics; Electronic Measurements; Signal Technology; Microelectronics; High Frequency Technology, Microwaves. Electrical Engineering; Renewable Energy; Automation, Robotics; Telecommunications Engineering.
期刊最新文献
Optimum Design of an 18-Pulse Phase Shifting Autotransformer Rectifier to Improve the Power Quality of Cascaded H-Bridge Motor Driver Classification of Resampled Pediatric Epilepsy EEG Data Using Artificial Neural Networks with Discrete Fourier Transforms Time-Based High-Pass, Low-Pass, Shelf, and Notch Filters Deep Learning Method for Power Side-Channel Analysis on Chip Leakages Design of a High-Performance Control Scheme for a Grid-Connected DFIG‐Based Wind Energy Conversion System Using Model Predictive Control and Hysteresis Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1