1BL/1RS易位对三个小麦重组自交系群体粒长增加的贡献

IF 1.2 4区 农林科学 Q3 AGRONOMY Czech Journal of Genetics and Plant Breeding Pub Date : 2020-03-17 DOI:10.17221/79/2019-cjgpb
Shuiqin Li, H. Tang, Han Zhang, Y. Mu, X. Lan, Jian Ma
{"title":"1BL/1RS易位对三个小麦重组自交系群体粒长增加的贡献","authors":"Shuiqin Li, H. Tang, Han Zhang, Y. Mu, X. Lan, Jian Ma","doi":"10.17221/79/2019-cjgpb","DOIUrl":null,"url":null,"abstract":"The 1BL/1RS wheat-rye translocation has been widely utilized in wheat genetic improvement and breeding programs. Our understanding on the effects of the 1BL/1RS translocation on wheat kernel size (e.g. length and width) is limited despite of numerous studies reporting about the effects on kernel weight. Here, we identified a wheat 1BL/1RS translocation line 88-1643 with higher kernel length (KL) using fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH) and molecular markers. To detect the possible role of the 1BL/1RS translocation in KL, kernel width (KW), and thousand-kernel weight (TKW), three recombinant inbred line (RIL) populations were constructed by crossing 88-1643 and three other wheat lines. As expected, the results showed that the values of KL in lines carrying 1RS were significantly higher than those carrying 1BS in three RIL populations at multiple environments, indicating that a major and stably expressed allele or gene responsible for increasing KL is most likely located on 1RS from 88-1643. Additionally, in one RIL population, the increased KL contributed significantly to the increase in TKW. Collectively, the 1BL/1RS translocation reported here is of interest to reveal molecular mechanism of the gene controlling KL and will be useful for improving wheat yield.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17221/79/2019-cjgpb","citationCount":"9","resultStr":"{\"title\":\"A 1BL/1RS translocation contributing to kernel length increase in three wheat recombinant inbred line populations\",\"authors\":\"Shuiqin Li, H. Tang, Han Zhang, Y. Mu, X. Lan, Jian Ma\",\"doi\":\"10.17221/79/2019-cjgpb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 1BL/1RS wheat-rye translocation has been widely utilized in wheat genetic improvement and breeding programs. Our understanding on the effects of the 1BL/1RS translocation on wheat kernel size (e.g. length and width) is limited despite of numerous studies reporting about the effects on kernel weight. Here, we identified a wheat 1BL/1RS translocation line 88-1643 with higher kernel length (KL) using fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH) and molecular markers. To detect the possible role of the 1BL/1RS translocation in KL, kernel width (KW), and thousand-kernel weight (TKW), three recombinant inbred line (RIL) populations were constructed by crossing 88-1643 and three other wheat lines. As expected, the results showed that the values of KL in lines carrying 1RS were significantly higher than those carrying 1BS in three RIL populations at multiple environments, indicating that a major and stably expressed allele or gene responsible for increasing KL is most likely located on 1RS from 88-1643. Additionally, in one RIL population, the increased KL contributed significantly to the increase in TKW. Collectively, the 1BL/1RS translocation reported here is of interest to reveal molecular mechanism of the gene controlling KL and will be useful for improving wheat yield.\",\"PeriodicalId\":50598,\"journal\":{\"name\":\"Czech Journal of Genetics and Plant Breeding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.17221/79/2019-cjgpb\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czech Journal of Genetics and Plant Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17221/79/2019-cjgpb\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czech Journal of Genetics and Plant Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/79/2019-cjgpb","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 9

摘要

1BL/1RS小麦-黑麦易位在小麦遗传改良和育种中得到了广泛的应用。尽管有大量研究报道了1BL/1RS易位对小麦籽粒大小(如长度和宽度)的影响,但我们对其影响的理解是有限的。在这里,我们使用荧光原位杂交(FISH)、基因组原位杂交(GISH)和分子标记鉴定了具有较高粒长(KL)的小麦1BL/1RS易位系88-1643。为了检测1BL/1RS易位在KL、粒宽(KW)和千粒重(TKW)中的可能作用,通过与88-1643和其他三个小麦系杂交构建了三个重组自交系(RIL)群体。正如预期的那样,结果表明,在多种环境下,在三个RIL群体中,携带1RS的系中的KL值显著高于携带1BS的系,这表明负责增加KL的主要且稳定表达的等位基因或基因最有可能位于88-1643的1RS上。此外,在一个RIL人群中,KL的增加对TKW的增加有显著贡献。总之,本文报道的1BL/1RS易位有助于揭示控制KL基因的分子机制,并将有助于提高小麦产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 1BL/1RS translocation contributing to kernel length increase in three wheat recombinant inbred line populations
The 1BL/1RS wheat-rye translocation has been widely utilized in wheat genetic improvement and breeding programs. Our understanding on the effects of the 1BL/1RS translocation on wheat kernel size (e.g. length and width) is limited despite of numerous studies reporting about the effects on kernel weight. Here, we identified a wheat 1BL/1RS translocation line 88-1643 with higher kernel length (KL) using fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH) and molecular markers. To detect the possible role of the 1BL/1RS translocation in KL, kernel width (KW), and thousand-kernel weight (TKW), three recombinant inbred line (RIL) populations were constructed by crossing 88-1643 and three other wheat lines. As expected, the results showed that the values of KL in lines carrying 1RS were significantly higher than those carrying 1BS in three RIL populations at multiple environments, indicating that a major and stably expressed allele or gene responsible for increasing KL is most likely located on 1RS from 88-1643. Additionally, in one RIL population, the increased KL contributed significantly to the increase in TKW. Collectively, the 1BL/1RS translocation reported here is of interest to reveal molecular mechanism of the gene controlling KL and will be useful for improving wheat yield.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Czech Journal of Genetics and Plant Breeding
Czech Journal of Genetics and Plant Breeding Agricultural and Biological Sciences-Plant Science
CiteScore
2.20
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: Original scientific papers, critical reviews articles and short communications from the field of theoretical and applied plant genetics, plant biotechnology and plant breeding. Papers are published in English.
期刊最新文献
Role of herbicide-tolerant (HT) rice in the weed management of direct seeded crop: Challenges and opportunities  Exploring potato diversity: A comprehensive genetic and phenotypic analysis of quantitative and qualitative traits  QTL mapping for heading date and plant height using a RIL population in rice in different photoperiod environments Isolation and expression analysis of the HvnAnt2 gene in qingke barley (Hordeum vulgare L. var. nudum Hook. f.) varieties with different grain colours List of Field Crop Varieties Registered in the Czech Republic in 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1