用基于Q图的边界稳定深度Q学习

IF 7.5 1区 计算机科学 Q1 ROBOTICS International Journal of Robotics Research Pub Date : 2023-07-25 DOI:10.1177/02783649231185165
Sabrina Hoppe, Markus Giftthaler, R. Krug, Marc Toussaint
{"title":"用基于Q图的边界稳定深度Q学习","authors":"Sabrina Hoppe, Markus Giftthaler, R. Krug, Marc Toussaint","doi":"10.1177/02783649231185165","DOIUrl":null,"url":null,"abstract":"State-of-the art deep reinforcement learning has enabled autonomous agents to learn complex strategies from scratch on many problems including continuous control tasks. Deep Q-networks (DQN) and deep deterministic policy gradients (DDPGs) are two such algorithms which are both based on Q-learning. They therefore all share function approximation, off-policy behavior, and bootstrapping—the constituents of the so-called deadly triad that is known for its convergence issues. We suggest to take a graph perspective on the data an agent has collected and show that the structure of this data graph is linked to the degree of divergence that can be expected. We further demonstrate that a subset of states and actions from the data graph can be selected such that the resulting finite graph can be interpreted as a simplified Markov decision process (MDP) for which the Q-values can be computed analytically. These Q-values are lower bounds for the Q-values in the original problem, and enforcing these bounds in temporal difference learning can help to prevent soft divergence. We show further effects on a simulated continuous control task, including improved sample efficiency, increased robustness toward hyperparameters as well as a better ability to cope with limited replay memory. Finally, we demonstrate the benefits of our method on a large robotic benchmark with an industrial assembly task and approximately 60 h of real-world interaction.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"42 1","pages":"633 - 654"},"PeriodicalIF":7.5000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizing deep Q-learning with Q-graph-based bounds\",\"authors\":\"Sabrina Hoppe, Markus Giftthaler, R. Krug, Marc Toussaint\",\"doi\":\"10.1177/02783649231185165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the art deep reinforcement learning has enabled autonomous agents to learn complex strategies from scratch on many problems including continuous control tasks. Deep Q-networks (DQN) and deep deterministic policy gradients (DDPGs) are two such algorithms which are both based on Q-learning. They therefore all share function approximation, off-policy behavior, and bootstrapping—the constituents of the so-called deadly triad that is known for its convergence issues. We suggest to take a graph perspective on the data an agent has collected and show that the structure of this data graph is linked to the degree of divergence that can be expected. We further demonstrate that a subset of states and actions from the data graph can be selected such that the resulting finite graph can be interpreted as a simplified Markov decision process (MDP) for which the Q-values can be computed analytically. These Q-values are lower bounds for the Q-values in the original problem, and enforcing these bounds in temporal difference learning can help to prevent soft divergence. We show further effects on a simulated continuous control task, including improved sample efficiency, increased robustness toward hyperparameters as well as a better ability to cope with limited replay memory. Finally, we demonstrate the benefits of our method on a large robotic benchmark with an industrial assembly task and approximately 60 h of real-world interaction.\",\"PeriodicalId\":54942,\"journal\":{\"name\":\"International Journal of Robotics Research\",\"volume\":\"42 1\",\"pages\":\"633 - 654\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/02783649231185165\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/02783649231185165","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

最先进的深度强化学习使自主主体能够从头开始学习包括连续控制任务在内的许多问题的复杂策略。深度Q网络(DQN)和深度确定性策略梯度(DDPG)是两种基于Q学习的算法。因此,它们都共享函数近似、非策略行为和自举——这是所谓的致命三元组的组成部分,以其收敛问题而闻名。我们建议从图的角度看待代理收集的数据,并表明该数据图的结构与可预期的分歧程度有关。我们进一步证明,可以从数据图中选择状态和动作的子集,使得得到的有限图可以被解释为简化的马尔可夫决策过程(MDP),对于该过程可以分析地计算Q值。这些Q值是原始问题中Q值的下限,在时间差学习中强制执行这些边界有助于防止软发散。我们展示了对模拟连续控制任务的进一步影响,包括提高了样本效率,增强了对超参数的鲁棒性,以及更好地处理有限回放内存的能力。最后,我们在一个大型机器人基准上展示了我们的方法的优势,该基准具有工业装配任务和大约60小时的真实世界交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stabilizing deep Q-learning with Q-graph-based bounds
State-of-the art deep reinforcement learning has enabled autonomous agents to learn complex strategies from scratch on many problems including continuous control tasks. Deep Q-networks (DQN) and deep deterministic policy gradients (DDPGs) are two such algorithms which are both based on Q-learning. They therefore all share function approximation, off-policy behavior, and bootstrapping—the constituents of the so-called deadly triad that is known for its convergence issues. We suggest to take a graph perspective on the data an agent has collected and show that the structure of this data graph is linked to the degree of divergence that can be expected. We further demonstrate that a subset of states and actions from the data graph can be selected such that the resulting finite graph can be interpreted as a simplified Markov decision process (MDP) for which the Q-values can be computed analytically. These Q-values are lower bounds for the Q-values in the original problem, and enforcing these bounds in temporal difference learning can help to prevent soft divergence. We show further effects on a simulated continuous control task, including improved sample efficiency, increased robustness toward hyperparameters as well as a better ability to cope with limited replay memory. Finally, we demonstrate the benefits of our method on a large robotic benchmark with an industrial assembly task and approximately 60 h of real-world interaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Robotics Research
International Journal of Robotics Research 工程技术-机器人学
CiteScore
22.20
自引率
0.00%
发文量
34
审稿时长
6-12 weeks
期刊介绍: The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research. IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics. The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time. In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.
期刊最新文献
Decentralized state estimation: An approach using pseudomeasurements and preintegration. Linear electrostatic actuators with Moiré-effect optical proprioceptive sensing and electroadhesive braking Under-canopy dataset for advancing simultaneous localization and mapping in agricultural robotics Multilevel motion planning: A fiber bundle formulation TRansPose: Large-scale multispectral dataset for transparent object
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1