{"title":"基于机器学习的纳米等离子体耦合器表面等离子体极化子功率流预测","authors":"Zahraa S. Khaleel, A. Mudhafer","doi":"10.1007/s10043-023-00822-y","DOIUrl":null,"url":null,"abstract":"<div><p>Using a combination of the finite element method (FEM) applied in COMSOL Multiphysics and the machine learning (ML)-based classification models, a computational tool has been developed to predict the appropriate amount of power flow in a plasmonic structure. As a plasmonic coupler, a proposed structure formed of an annular configuration with teeth-shaped internal corrugations and a center nanowire is presented. The following representative data mining techniques: standalone J48 decision tree, support vector machine (SVM), Hoeffding tree, and Naïve Bayes are systematically used. First, a FEM is used to obtain power flow data by taking into consideration a geometrical dimensions, involving a nanowire radius, tooth profile, and nanoslit width. Then, we use them as inputs to learn about machine how to predicate the appropriate power flow without needing FEM of COMSOL, this will reduce financial consumption, time and effort. Therefore, we will determine the optimum approach for predicting the power flow of the proposed structure in this work based on the confusion matrix. It is envisaged that these predictions’ results will be important for future optoelectronic devices for extraordinary optical transmission (EOT).</p></div>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"30 4","pages":"454 - 461"},"PeriodicalIF":1.1000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10043-023-00822-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based classification for predicting the power flow of surface plasmon polaritons in nanoplasmonic coupler\",\"authors\":\"Zahraa S. Khaleel, A. Mudhafer\",\"doi\":\"10.1007/s10043-023-00822-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using a combination of the finite element method (FEM) applied in COMSOL Multiphysics and the machine learning (ML)-based classification models, a computational tool has been developed to predict the appropriate amount of power flow in a plasmonic structure. As a plasmonic coupler, a proposed structure formed of an annular configuration with teeth-shaped internal corrugations and a center nanowire is presented. The following representative data mining techniques: standalone J48 decision tree, support vector machine (SVM), Hoeffding tree, and Naïve Bayes are systematically used. First, a FEM is used to obtain power flow data by taking into consideration a geometrical dimensions, involving a nanowire radius, tooth profile, and nanoslit width. Then, we use them as inputs to learn about machine how to predicate the appropriate power flow without needing FEM of COMSOL, this will reduce financial consumption, time and effort. Therefore, we will determine the optimum approach for predicting the power flow of the proposed structure in this work based on the confusion matrix. It is envisaged that these predictions’ results will be important for future optoelectronic devices for extraordinary optical transmission (EOT).</p></div>\",\"PeriodicalId\":722,\"journal\":{\"name\":\"Optical Review\",\"volume\":\"30 4\",\"pages\":\"454 - 461\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10043-023-00822-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Review\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10043-023-00822-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10043-023-00822-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Machine learning-based classification for predicting the power flow of surface plasmon polaritons in nanoplasmonic coupler
Using a combination of the finite element method (FEM) applied in COMSOL Multiphysics and the machine learning (ML)-based classification models, a computational tool has been developed to predict the appropriate amount of power flow in a plasmonic structure. As a plasmonic coupler, a proposed structure formed of an annular configuration with teeth-shaped internal corrugations and a center nanowire is presented. The following representative data mining techniques: standalone J48 decision tree, support vector machine (SVM), Hoeffding tree, and Naïve Bayes are systematically used. First, a FEM is used to obtain power flow data by taking into consideration a geometrical dimensions, involving a nanowire radius, tooth profile, and nanoslit width. Then, we use them as inputs to learn about machine how to predicate the appropriate power flow without needing FEM of COMSOL, this will reduce financial consumption, time and effort. Therefore, we will determine the optimum approach for predicting the power flow of the proposed structure in this work based on the confusion matrix. It is envisaged that these predictions’ results will be important for future optoelectronic devices for extraordinary optical transmission (EOT).
期刊介绍:
Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is:
General and physical optics;
Quantum optics and spectroscopy;
Information optics;
Photonics and optoelectronics;
Biomedical photonics and biological optics;
Lasers;
Nonlinear optics;
Optical systems and technologies;
Optical materials and manufacturing technologies;
Vision;
Infrared and short wavelength optics;
Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies;
Other optical methods and applications.