含水平裂缝页岩各向异性参数和反射率的近似计算方法

IF 1.6 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Journal of Geophysics and Engineering Pub Date : 2023-08-02 DOI:10.1093/jge/gxad057
Chao Chen, Xingyao Yin, Zuqing Chen, Xiaojing Liu, Jingbo Wang
{"title":"含水平裂缝页岩各向异性参数和反射率的近似计算方法","authors":"Chao Chen, Xingyao Yin, Zuqing Chen, Xiaojing Liu, Jingbo Wang","doi":"10.1093/jge/gxad057","DOIUrl":null,"url":null,"abstract":"\n Shale is a typical medium of transverse isotropy with a vertical axis of symmetry (VTI), and its strong anisotropy is mainly due to the combined effect of intrinsic anisotropy and that induced by horizontal fractures. To calculate the anisotropy parameters of shale, a physical rock model is built based on Hudson's thin-coin fracture model and Schoenberg's linear-sliding model, and an approximate theoretical calculation method for Thomsen's anisotropy parameters of VTI media with horizontal fractures is proposed. These calculation results using the proposed method confirm that this anisotropy contributed by horizontal fractures cannot be ignored to the overall anisotropy of shale. To simplify Rüger's formula that is an approximate theoretical formula for calculating the anisotropic reflection coefficients of VTI media, a new four-term approximate formula is derived in a standard reflectivity form based on Rüger's and Aki-Richards’ formulas. The simulation results of a VTI theoretical model and logging data of shale reservoirs show that there is only a small difference between the newly derived four-term formula and Rüger's formula for incidence angles less than 40°, and the new four-term formula can correctly reveal the seismic amplitude-versus-offset (AVO) characteristics of VTI media and fully retain the corresponding anisotropic seismic responses. Compared to Rüger's formula, the proposed new formula only has four terms of unknown parameters and can directly decouple Thomsen's anisotropy parameter ε from them, which helps to alleviate the ill-posed problems of simultaneous inversion of multiple parameters and enhance its application potential in seismic inversion of VTI media as shale.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approximate method for calculating anisotropy parameters and reflectivity of shales with horizontal fractures\",\"authors\":\"Chao Chen, Xingyao Yin, Zuqing Chen, Xiaojing Liu, Jingbo Wang\",\"doi\":\"10.1093/jge/gxad057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Shale is a typical medium of transverse isotropy with a vertical axis of symmetry (VTI), and its strong anisotropy is mainly due to the combined effect of intrinsic anisotropy and that induced by horizontal fractures. To calculate the anisotropy parameters of shale, a physical rock model is built based on Hudson's thin-coin fracture model and Schoenberg's linear-sliding model, and an approximate theoretical calculation method for Thomsen's anisotropy parameters of VTI media with horizontal fractures is proposed. These calculation results using the proposed method confirm that this anisotropy contributed by horizontal fractures cannot be ignored to the overall anisotropy of shale. To simplify Rüger's formula that is an approximate theoretical formula for calculating the anisotropic reflection coefficients of VTI media, a new four-term approximate formula is derived in a standard reflectivity form based on Rüger's and Aki-Richards’ formulas. The simulation results of a VTI theoretical model and logging data of shale reservoirs show that there is only a small difference between the newly derived four-term formula and Rüger's formula for incidence angles less than 40°, and the new four-term formula can correctly reveal the seismic amplitude-versus-offset (AVO) characteristics of VTI media and fully retain the corresponding anisotropic seismic responses. Compared to Rüger's formula, the proposed new formula only has four terms of unknown parameters and can directly decouple Thomsen's anisotropy parameter ε from them, which helps to alleviate the ill-posed problems of simultaneous inversion of multiple parameters and enhance its application potential in seismic inversion of VTI media as shale.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxad057\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxad057","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

页岩是一种典型的横向各向同性带垂直对称轴的介质,其强各向异性主要是本征各向异性和水平裂缝诱导各向异性共同作用的结果。为计算页岩各向异性参数,基于Hudson薄硬币裂缝模型和Schoenberg线性滑动模型建立了物理岩石模型,提出了含水平裂缝的VTI介质Thomsen各向异性参数的近似理论计算方法。计算结果表明,水平裂缝的各向异性对页岩整体各向异性的影响不容忽视。为了简化计算VTI介质各向异性反射系数的近似理论公式r ger公式,在r ger公式和Aki-Richards公式的基础上,导出了标准反射率形式的四项近似公式。对VTI理论模型和页岩储层测井资料的模拟结果表明,在入射角小于40°的情况下,新导出的四项公式与r ger公式相差不大,能正确反映VTI介质的地震幅偏特征,充分保留了相应的各向异性地震响应。与r ger公式相比,新公式只有4项未知参数,可直接解耦Thomsen各向异性参数ε,有助于缓解多参数同时反演的不适定问题,提高了其在页岩等VTI介质地震反演中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An approximate method for calculating anisotropy parameters and reflectivity of shales with horizontal fractures
Shale is a typical medium of transverse isotropy with a vertical axis of symmetry (VTI), and its strong anisotropy is mainly due to the combined effect of intrinsic anisotropy and that induced by horizontal fractures. To calculate the anisotropy parameters of shale, a physical rock model is built based on Hudson's thin-coin fracture model and Schoenberg's linear-sliding model, and an approximate theoretical calculation method for Thomsen's anisotropy parameters of VTI media with horizontal fractures is proposed. These calculation results using the proposed method confirm that this anisotropy contributed by horizontal fractures cannot be ignored to the overall anisotropy of shale. To simplify Rüger's formula that is an approximate theoretical formula for calculating the anisotropic reflection coefficients of VTI media, a new four-term approximate formula is derived in a standard reflectivity form based on Rüger's and Aki-Richards’ formulas. The simulation results of a VTI theoretical model and logging data of shale reservoirs show that there is only a small difference between the newly derived four-term formula and Rüger's formula for incidence angles less than 40°, and the new four-term formula can correctly reveal the seismic amplitude-versus-offset (AVO) characteristics of VTI media and fully retain the corresponding anisotropic seismic responses. Compared to Rüger's formula, the proposed new formula only has four terms of unknown parameters and can directly decouple Thomsen's anisotropy parameter ε from them, which helps to alleviate the ill-posed problems of simultaneous inversion of multiple parameters and enhance its application potential in seismic inversion of VTI media as shale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysics and Engineering
Journal of Geophysics and Engineering 工程技术-地球化学与地球物理
CiteScore
2.50
自引率
21.40%
发文量
87
审稿时长
4 months
期刊介绍: Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.
期刊最新文献
Quasi-2D inversion of surface large fixed-loop transient electromagnetic sounding data Automatic thrust/fault and edge location with gravity data across the Shillong plateau and Mikir hill complex in northeastern India using the most positive and most negative curvature interpretation High-order Azimuth Coherent Imaging for Microseismic Location Characteristic analysis and data comparative of linear and nonlinear low frequency sweep in vibroseis Viscoacoustic least squares reverse-time migration using L1-2 norm sparsity constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1